Chords

\& Calculators

The Metaphor of Math and Music Theory

by Lon W. Chaffin

Copyright © 2020 LCS Productions

Introduction

The trees are important, but let's look at the forest for a bit. Let's look beyond the black spots on the page and see what else the music holds in store. In my 37 years as a music theory teacher, I have often asked my students to step back from the details and look at the bigger picture. I believe they need a broader perspective, a more holistic view. They need to explore the vast forest to really understand the significance of the trees.

Pythagoras, the Greek philosopher and mathematician, had an interesting take on this notion. He once said, "There is geometry in the humming of the strings. There is music in the spacing of the spheres." If you are at all familiar with his work and accomplishments, you will know that he certainly had a broad perspective. He envisioned the big picture.

Making connections was something Pythagoras did. To me, music theory has always been about making connections. Going from one note to the next, connecting the linear movement of pitches is what we call voice-leading. How pitches are connected vertically is known as harmonic structure. Moving from one chord to another, connecting one harmony to the next is what we refer to as harmonic progression. We study the connections between the horizontal and the vertical, the relationships of recurring patterns, the associations within larger formal structures, and a multitude of other interconnected aspects of music.

The 19th-century physicist and physician, Hermann von Helmholtz, commented on the connections he perceived between math and music when he said, "Mathematics and music, ...supporting each other, as if to show forth the secret connection which ties together all the activities of our mind..."l This music and math connection has even been noted by the popular singer-songwriter, James Taylor. He once said in a magazine interview, "Music is true. An octave is a mathematical reality." ${ }^{2}$

We have all heard the phrase, "thinking outside the box." Helmholtz was certainly an example of that kind of thinking, exploring beyond the established parameters. The idea of "the box" implies that something is contained or isolated and other things are excluded. I would suggest that we not only think outside our boxes but that we take our various boxes and overlap them. Let's become inclusive and not exclusively self-contained. Let's take the music theory box, which is typically isolated from other areas of study, and overlap it with as many diverse boxes as possible. In this study, math is the other box.

Albert Einstein was certainly a man with overlapping interests. He once said, "If I were not a physicist, I would probably be a musician. I often think in music. I live my daydreams in music. I see my life in terms of music." This last concept could be considered metaphor. In his book, A Whole New Mind, Daniel Pink puts forth the notion that metaphor is simply "understanding one thing in terms of something else..." ${ }^{3}$

That's what this book is, a metaphor of math and music theory, understanding one in terms of the other. It's a tool for seeing a bigger picture, for making connections, and overlapping our boxes. All of these should help us grasp some basic concepts of both music theory and math in new, unique, and insightful ways. It's my attempt to explore both the forest and the trees.

About This Book

This book assumes very little on the part of the reader/student. The only expectation is an understanding of basic music notation. The reader/student should already know how to read notes in both the treble and bass clefs, as well as ledger lines above and below each. They should also understand the functions of sharps, flats, double sharps and flats, and naturals.

A conversational approach is how the text is presented. The verbalization of each concept is written as if I am interacting with a room full of students or maybe a single student. I want the reader/student to feel we are exploring and discovering new ideas together, not that someone is lecturing from a position of authority or superior knowledge. I designed this to be straightforward, easy to read, and understandable for new music theory students. It is not written to impress other scholars.

In the text itself, I have incorporated various fonts and styles in an attempt to direct the reader's attention to the various concepts we are exploring. All musical terms are italicized. Mathematical equations are in a different font so they will stand out from the conversational text. Musical symbols are in the same font as the math equations because they overlap and are interconnected. Since this study is under the umbrella of metaphor, each verbal metaphor that is used is in green. I hope that including these will add a bit of humor and draw attention to this form of symbolism and the conceptual overlapping of ideas.

Throughout the book there are several words or phrases that are underlined and in blue. Each of these is a hyperlink to either an external website or an internal bookmark. Of course, these will not function in a printed version of this book, but are intended to facilitate cross-referencing in the electronic book form. Also included for the e-book format are audio clips and videos that serve as supplemental resources intended to facilitate comprehension.

Incorporated in the text is an abundance of graphics. The most common will be illustrations displayed on a music staff, a piano keyboard, and a circular clock-type graphic. There are also mathematical charts, graphs, and diagrams. Quite a few of these examples include color coded elements. Explanations for some of the color variations will be included in the text as they are introduced. Other colors are added simply to differentiate one example from another.

One other graphic element will be seen throughout the book. It is a red set of two beamed eighth notes ($\boldsymbol{\delta})$. These are included to simply bring the reader's attention to something of significance that might otherwise be overlooked in the midst of the conversation.

All of these various fonts, graphics, and color-coded elements are to give the student multiple opportunities for visualizing and sorting out the concepts being discussed. They are integral to the study. They should be considered significant and utilized in every presentation of the material.

Words, pictures, colors, humor... I hope all of these come together to make math and music theory a bit easier to digest.
http://www.lcsproductions.net

Table of Contents

Section 1	The Musical Alphabet and Modulo 7	p. 5
Section 2	The Chromatic Pitch Set and Modulo 12	p. 8
Section 3	Intervals: Ascending	p. 12
Section 4	Intervals: Descending	p. 18
Section 5	Intervals: Inversions	p. 22
Section 6	Intervals: Diatonic	p. 25
Section 7	Intervals: Augmented and Diminished	p. 29
Section 8	Diatonic Scales: Major	p. 37
Section 9	Diatonic Scales: Minor	p. 42
Section 10	Keys: Major	p. 47
Section 11	Keys: Minor	p. 54
Section 12	Rhythm: Note Values	p. 57
Section 13	Rhythm: Simple Meter	p. 62
Section 14	Rhythm: Compound Meter	p. 65
Section 15	Rhythm: Asymmetrical Meter	p. 68
Section 16	Diatonic Harmony: Triad Construction	p. 71
Section 17	Diatonic Harmony: Chord Quality	p. 75
Section 18	Diatonic Harmony: Seventh Chords	p. 82
Section 19	Diatonic Harmony: Inversions and Figured Bass	p. 89
Section 20	Harmonic Progression: Strong Root Movements	p. 93
Section 21	Harmonic Progression: Cadences	p. 97
Section 22	Harmonic Progression: Voice-leading	p. 101
Section 23	Harmonic Progression: Part-writing	p. 105
Section 24	Harmonic Progression: Non-harmonic Tones	p. 109
Section 25	Closely-related Keys	p. 113
Worksheets		p. 120

End Notes and Bibliography

Appendices

Graphics for Reference
Math Equations and Charts
Additional Math Connections

Section 1

The Musical Alphabet and
 Modulo 7

Music uses an "alphabet" with only 7 letters (ABCDEFG). When the sequence reaches G it begins again with A. (A B C D E F G A B C D E...)

A (diatonic) scale in music is a sequence of pitches (with corresponding letter names) that encompasses all seven of the letters of the musical "alphabet." A (diatonic) scale can begin on any of the seven pitches (letters) and progress through the remaining pitches.
examples: CDEFGAB(C); FGABCDE(F); etc.

When numbering the pitches of a (diatonic) scale, $\hat{1}$ will correspond to the pitch on which the scale is based. This pitch (or tone) is referred to as the tonic. The numbers are then referred to as scale degrees. A scale degree is designated as a number with a circumflex $\left({ }^{\wedge}\right)$ above.
examples:

d Modulo 7 is a system of numbering, using only 1 through 7. Any given number larger than 7 will be divided by 7 with the remainder being its congruent number.

The symbol for congruent is \equiv

$$
\begin{array}{ll}
\text { examples: } & 10 \div 7=1 \text { with a remainder of } 3 \text {, so } 10 \equiv 3(\text { modulo } 7) \\
& 16 \div 7=2 \text { with a remainder of } 2 \text {, so } 16 \equiv 2(\text { modulo } 7)
\end{array}
$$

As long as the given number is larger than 7 and smaller than 15 , a simpler way to figure the congruent number is to subtract 7 from the given number.
example: $10-7=3$, so $10 \equiv 3(\bmod 7)$
This system simply involves counting from 1 to 7 then starting over at 1 as you continue.

$$
\begin{array}{ccccccccccccccc}
& & & & & 2 & 3 & 4 & 5 & 6 & 7 & 1 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & (8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \ldots)
\end{array}
$$

It would be like using a 7 -point "clock." Each time the hand passes 7 it would move on to 1 and begin again.

\mathcal{J} In music, mod 7 is used in conjunction with diatonic structures. The relationships of the numbers are relative to the specific tonic pitch and corresponding scale, as seen in the musical examples on the previous page. The tonic pitch will always be designated as $\hat{1}$.

Section 2

The Chromatic Pitch Set and
 Modulo 12

When a (diatonic) scale is utilized, there are seven unique pitches that correspond to the seven letters in our musical alphabet. When the scale is constructed, beginning with the tonic pitch ($\hat{\mathbf{1}}$) and progressing through the seventh scale degree ($(\hat{\mathbf{7}}$), the tonic is usually repeated at the end of the sequence to complete the scale. This fully constructed scale, beginning and ending with the tonic pitch, encompasses what is referred to as an octave.
examples:

The scale above that begins and ends with C, when seen on a piano keyboard, would be represented like this.

Notice that the C scale only utilizes seven white keys on the keyboard (eight, if you count the repeated C at the octave). If you count both the white and black keys from $\hat{1}$ to $\hat{7}$, there are actually 12 different keys/pitches, as seen here.

This is what we call a chromatic scale. It includes every pitch within one octave.
The distance between each of the pitches in this scale is referred to as a half-step. On a keyboard, that's the distance between two adjacent keys/pitches with no other keys/pitches in between.

Since our musical alphabet only has seven letters, which correspond to only the white keys on the keyboard, there has to be a way to designate and label the black keys.

JJ Any pitch within our musical alphabet can be raised by one half-step by adding a sharp (\#).
\boldsymbol{J} Any pitch from our alphabet can be lowered by one half-step by adding a flat (b).
These designations can be seen on the keyboard below. Notice that each black key has two different designations, one coming from below (the left), by adding a sharp ($\#$), and one coming from above (the right), by adding a flat (b). You see that $C \#$ and $D b$ reside on the same black key. $F \#$ and $G b$ share the same key, and so on.
\mathcal{J} These are called enharmonic pitches. They sound the same when played on the keyboard, but have different names. They will also have different functions in various contexts.

You're probably wondering... "What about E \& F and B \& C? There are no black notes between those keys." You can certainly have an E\#. It would be enharmonically the same as an F. You can also have an Fb . It's enharmonically the same as an E . This would also be true for $\mathrm{B} \& \mathrm{C}$.

I'm sure you've noticed that each of the keys on this keyboard are numbered. Those numbers will be used in the related math concepts we will be considering throughout this study. They are the basis for the Modulo 12 system.

JJ Modulo 12 is a system of numbering, using 0 through 11. Any given number larger than 11 will be divided by 12 with the remainder being its "congruent" number.
example: $16 \div 12=1$ with a remainder of 4 , so $16 \equiv 4(\bmod 12)$
As long as the given number is larger than 11 and smaller than 24 , a simpler way to figure the congruent number is to subtract 12 from the given number.
example: $16-12=4$, so $16 \equiv 4(\bmod 12)$

This system simply involves counting from 0 to 11 then starting over at 0 as you continue.

The mod 12 "clock" is laid out like a regular clock with one exception, instead of using the number 12, 0 is used.

\sqrt{J} Also, unlike the mod 7 "clock" on which the numbers are relative to a specific diatonic scale, the numbers on the mod 12 "clock" always correspond to a given set of specific pitches.

In this study, as in most settings of musical set theory, the pitches and corresponding numbers of mod 12 will always be fixed. 0 will always be C. 1 will always be $C \# / D b$, and so on. The relationships of these numbers will not change according to any diatonic structure that is extrapolated from the Chromatic Pitch $\mathbf{S e t}(\mathbf{C P S})$.

The labeled keyboard and CPS graphics are available at the end of the book for your reference.

Section 3

Intervals
 Ascending

\mathcal{J} A musical interval is the vertical (harmonic) distance between two pitches. The musical terminology for it includes both the quality of the interval and the actual distance (how far away one pitch is from the other).

The quality is designated by a single letter. Here are the letters and their designations:

$$
P=\text { perfect } \quad M=\text { major } \quad m=\text { minor } \quad d=\text { diminished } \quad A=\text { augmented }
$$

The distance values are:

$$
\begin{array}{lccc}
\begin{array}{l}
U=\text { unison } \\
6=\operatorname{sixth}(6 \text { th })
\end{array} & 2=\operatorname{second}(2 \mathrm{nd}) & 3=\text { third }(3 \mathrm{rd}) & 4=\text { fourth }(4 \mathrm{th}) \\
8=\text { seventh }(7 \mathrm{th}) & 8=\text { octave } & &
\end{array}
$$

Here are examples of how interval designations are written:

Let's look at the different types of intervals from a numeric, objective, mathematical perspective. The following is a chart of intervals with the number of half-steps between the two pitches. As examples, we'll add some graphic representations for a few of them on a staff, a keyboard, and our CPS (from Section 2).

| LABEL | PU | m 2 | M2 | m 3 | M 3 | P 4 | A4
 d 5 | P 5 | m 6 | M 6 | m 7 | M 7 | P 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \# of half-
 steps | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |

If you noticed the title of this section, it referred to "ascending" intervals. This simply means we'll be considering the relationship of the two pitches from the lower one to the one above. We'll discuss "descending" intervals in the next section.

At this point in our study, we'll base our intervals on C as the lower pitch. This will allow us to use the CPS and our labeled keyboard as easy references.

Let's look at four of the intervals noted above in three different graphical forms.

M2

P5

JJ We should probably make note at this point that a M 2 (made up of 2 half-steps) is often referred to as a whole-step or a whole-tone. This little tidbit of information will come in handy as we consider the next paragraph or two.

If you noticed in the interval chart on the previous page, one of the intervals was given two designations. The interval that has 6 half-steps was labeled as an augmented fourth (A4) and a diminished fifth (d5). The A4 would be from C up to $F \#$. The d 5 would be from C up to Gb . Those are enharmonically the same but will serve different functions in different contexts (something we'll cover later). Often, instead of giving this interval the typical quality/distance designation, it is referred to as a tritone... and it has some colorful mathematical features.

If you take the 6 half-steps that form the tritone and divide them into 3 equal groups, you get 3 wholetones. So, 3 whole-tones equals 1 tritone. On our keyboard below, the 3 ascending whole-tones are C to D, D to E , and E to $\mathrm{F} \#$.

You should also note that three descending whole-tones will result in the same interval. These 3 whole-tones, C to $B b, B b$ to $A b$, and $A b$ to $G b$, will give you a tritone.

There's one more interesting fact to consider before we move on. The tritone is the exact center of the octave. The keyboard and CPS illustrations below should help us visualize this.

Of course, you must realize that we can't just build intervals around the pitch C. Any interval can be built from any pitch. The starting pitch may be different, but the half-step relationships will be exactly the same.

Let's use a math equation to help us make the shift away from C. This equation will work no matter what pitch you start with. Let's use the letter \mathbf{p} to serve as our variable. The letter p will represent the pitch we use as the starting point from which we measure the distance to the related pitch. p can be any pitch/number from our Chromatic Pitch Set.
\mathcal{J} In mathematical terms, a musical interval is simply a set of two pitches/numbers. A set that represents an ascending perfect fifth (P5), starting from C, would be $\{0,7\}$. From our CPS, 0 is \mathbf{C} and 7 is G. This can be written as:

$$
P 5=\{0,7\}(\bmod 12)
$$

The designation $(\bmod 12)$ is used to indicate that the Modulo 12 numbering system is being used.
A P5 will always be the distance of 7 half-steps. If p is our starting point, then $\mathrm{p}+7$ will be a P5. The mathematical representation for that will be:

$$
P 5=\{p,(p+7)\}(\bmod 12)
$$

Let's compare a P5 from C and a P5 from $E b$.
If $p=0 \quad P 5=\{0,(0+7)\}(\bmod 12) \quad P 5=\{0,7\}(\bmod 12)$

\mathcal{J} In many respects, figuring interval distances from a given pitch is like running a mile. It doesn't matter where the starting line is, the distance to the finish line is still a mile away. Whatever the starting point is for a given interval, the other pitch will always be exactly the same number of half-steps away.

Just for quick reference, let's include a chart with the interval designations and the formula for each.

$$
\mathrm{p}=\text { any pitch from the Chromatic Pitch Set }
$$

Perfect Unison	$P U=\{p,(p+0)\}(\bmod 12)$
Minor Second	$m 2=\{p,(p+1)\}(\bmod 12)$
Major Second	$M 2=\{p,(p+2)\}(\bmod 12)$
Minor Third	$m 3=\{p,(p+3)\}(\bmod 12)$
Major Third	$P 4=\{p,(p+4)\}(\bmod 12)$
Perfect Fourth	$P 4 / d 5=\{p,(p+6)\}(\bmod 12)$
Augmented Fourth Diminished Fifth	$m 6=\{p,(p+7)\}(\bmod 12)$
Perfect Fifth	$M 6=\{p,(p+9)\}(\bmod 12)$
Minor Sixth	$m 7=\{p,(p+10)\}(\bmod 12)$
Major Sixth	$M 7=\{p,(p+11)\}(\bmod 12)$
Minor Seventh	$P 8=\{p,(p+12)\}(\bmod 12)$
Major Seventh	
Perfect Octave	

Section 4
 Intervals
 Descending

$\sqrt{ } \sqrt{ }$ Extending the metaphor of the mile run, descending intervals work the same way as ascending intervals, they just run the same course in the opposite direction. So, our ascending intervals will each have a mirrored counterpart. On our CPS, the ascending intervals were graphed in a clockwise direction. Descending intervals will have the same labels and number of half-steps, but they will be graphed in a counter-clockwise direction.

Let's compare the same ascending and descending intervals. We'll first look at intervals starting on C. From C up to Eb is a m 3 (3 half-steps). From \mathbf{C} down to A is also a m 3 (3 half-steps).

The formula for this example will be:

$$
m 3=\{0,(0 \pm 3)\}(\bmod 12)
$$

Notice the formula is the same as in the previous section, Ascending Intervals, with the exception of the \pm symbol. This simply means plus or minus. So, a m3 can be either 3 half-steps up or 3 half-steps down from the given pitch.

If you're looking at the actual numbers on the CPS you've noted that the descending interval, going counter-clockwise, counts backwards. The m3 up from $C(0)$ is $E b(3)$, and the $m 3$ down from $C(0)$ is A (9). So, in this instance $\ldots m 3=\{0,3\}$ or $\{0,9\}(\bmod 12)$.

If we use the mathematical symbol for "or" the equation would look like this:

$$
m 3=\{0,3\} \vee\{0,9\}(\bmod 12)
$$

Let's look at one more example starting from C , a P 4 .

The first thing you should observe is that the keyboard has been shifted over just a bit to accommodate all three of the pitches we're using. $\mathbf{C}(0)$ is in the middle of the graphic.

Here's how this will look mathematically:

$$
\begin{aligned}
& P 4=\{0,(0 \pm 5)\}(\bmod 12) \\
& P 4=\{0,5\} \vee\{0,7\}(\bmod 12)
\end{aligned}
$$

To designate whether a single interval should be figured as ascending (up) or descending (down) we can add one symbol to clarify the equation. To signify an ascending interval we will simply add the \uparrow symbol to the interval label, such as: $\mathrm{P} 4 \uparrow$

We'll use the same procedure to indicate a descending interval, using the \downarrow symbol, such as: P4 \downarrow
If we want to mathematically indicate an ascending m 6 from the pitch D we would write:

$$
\mathrm{m} 6 \uparrow=\{2,10\}(\bmod 12)
$$

A descending M3 from G would be:

$$
\text { M3 } \downarrow=\{7,3\}(\bmod 12)
$$

Even though it's a bit redundant, let's go ahead and include another interval chart with the updated formula, using the \pm symbol. (see the next page)

Interval Equation Chart

$p=$ any pitch from the Chromatic Pitch Set

Perfect Unison	$P U=\{p,(p \pm 0)\}(\bmod 12)$
Minor Second	$m 2=\{p,(p \pm 1)\}(\bmod 12)$
Major Second	$M 2=\{p,(p \pm 2)\}(\bmod 12)$
Minor Third	$\mathrm{m} 3=\{p,(p \pm 3)\}(\bmod 12)$
Major Third	$P 4=\{p,(p \pm 4)\}(\bmod 12)$
Perfect Fourth	$\mathrm{A} 4 / \mathrm{d} 5=\{p,(p \pm 6)\}(\bmod 12)$
Augmented Fourth Diminished Fifth	$\mathrm{m} 6=\{p,(p \pm 7)\}(\bmod 12)$
Perfect Fifth	$M 6=\{p,(p \pm 9)\}(\bmod 12)$
Minor Sixth	$m 7=\{p,(p \pm 10)\}(\bmod 12)$
Major Sixth	$M 7=\{p,(p \pm 11)\}(\bmod 12)$
Minor Seventh	$P 8=\{p,(p \pm 12)\}(\bmod 12)$
Major Seventh	
Perfect Octave	

Section 5
 Intervals Inversions

\sqrt{J} Each interval also has a complimentary interval known as its inversion. The inversion is the interval that, when combined with the original interval, makes a complete octave. The inversion is the remainder of the octave. In numerical terms, the inversion will be the difference between the original interval and 12, remembering that 12 is congruent with 0 in modulo 12.

$$
12 \equiv 0(\bmod 12)
$$

\sqrt{J} The inversion is complimentary to the original interval in terms of direction. If the original is an ascending interval the inversion will be descending. The opposite of that will be true as well. If the original is descending, the inversion will be ascending. On our CPS, the inversion will travel from the given pitch, in the opposite direction from the original interval, until it reaches the second pitch of the original interval. This concept, in my opinion, is much easier to grasp with graphic representations.

If the given interval is a P4 \uparrow the inversion will be a P5 \downarrow. Let's see how that looks with F as the given pitch. (Note : The given pitch is purple, the original interval is blue, and the inversion is red.)

If the original interval is a P4, the number of half-steps will be 5 . Since the inversion will be the difference between the original interval and the octave, we will subtract 5 from 12 and get 7 . The remainder (7) will be the inversion.

If we let the letter O represent the original interval and I represent the inversion, we could say:

$$
\begin{aligned}
& \text { If } O=5 \text { then } I=(0-5) \\
& O=5 \rightarrow I=7
\end{aligned}
$$

In mathematical terms, the \rightarrow represents the "if, then" relationship.

Just for a moment, let's think about pizza. If we have a large pizza, cut in to 12 equal slices, and someone takes 3, how much is left for the rest of us? Of course, if someone takes 3 of the 12 slices there will be 9 slices left. The same is true with intervals and their inversions. When an interval takes its portion of the octave, whatever is left is the inversion.

Let's look at one more graphic example of an interval and its inversion. This time we'll start with a descending interval as the original. We'll use a $\mathrm{m} 3 \downarrow$. Since the m 3 is 3 half-steps, the inversion will be 9 half-steps or M6 (12-3 = 9).

$$
\mathrm{O}=3 \rightarrow \mathrm{I}=9
$$

(Note: As before, the given pitch is purple, the original interval is blue, and the inversion is red.)

Here are a few tips to keep in mind when figuring inversions:

- JI If the original interval is a perfect (\mathbf{P}) interval, the inversion will also be perfect (\mathbf{P}). Only octaves, 4 ths and 5 ths can be considered perfect. (They can also be diminished or augmented, but we'll talk about these a bit later.)

```
P4 \(\uparrow \rightarrow\) P5 \(\downarrow\)
```

P5 $\uparrow \rightarrow \mathrm{P} 4 \downarrow$

- JJ If the original interval is a major (M) interval, the inversion will always be minor (\mathbf{m}), and viceversa. $2 n d s, 3 r d s, 6 t h s$, and 7 ths can be minor or major. (These can also be diminished or augmented... later.)

$$
\begin{aligned}
& \text { M3 } \uparrow \rightarrow \text { m6 } \downarrow \\
& \text { m2 } \uparrow \rightarrow \text { M7 } \downarrow
\end{aligned}
$$

- JJ Perfect unisons and octaves have no real inversions. Each consists of the same two pitches, either in the same place or displaced by an octave. Some folks will claim that a unison will invert to a full octave, and vice-versa. Instead of discussing those issues here, we'll go ahead and invert those as some would suggest (see table below).

Just for reference, let's add a table here with the basic intervals and their inversions.

PU	M2	M3	P4	A4	P5	M6	M7	P8
P8	$m 7$	$m 6$	P5	d5 *	P4	m3	m2	PU

(See Interval/Inversion Equations Chart)

[^0]Section 6

Intervals
 Diatonic

If you've thought about our discussion of the tritone from Section 3, you've probably wondered about augmented and diminished intervals. It's about time to consider those and how they work within our system, but we first need to take a brief look at how intervals work within a diatonic setting.

For this section, we will be bringing our musical alphabet and modulo 7 back into the discussion. Let's put the CPS aside for a bit and just use the letters of our musical alphabet as reference points, but let's arrange them from C to C (like the CPS). This will form a diatonic scale. Do you remember our discussion of a diatonic scale from Section 1? If not, here's a reminder:
$\int J \mathrm{~A}$ (diatonic) scale in music is a sequence of pitches that encompasses all seven of the letters of the musical "alphabet." A (diatonic) scale can begin on any of the seven pitches (letters) and progress through the remaining pitches.

For reference in our current discussion, here's our diatonic scale based on C :

If we have an interval that includes two adjacent letters of the musical alphabet, whether ascending or descending, it will be considered a $2 n d$. Please note that there is no quality designation assigned. So, C to D, F to G, E to D , and C to B are all considered $2 n d s$ (quality excluded).

Using a mathematical equation, with p as our given note, that relationship would look like this (Remember that we are looking at scale degrees in mod 7 and not half-steps as in mod 12):

$$
2 \mathrm{nd}=\{\mathrm{p},(\mathrm{p} \pm 1)\}(\bmod 7)
$$

If $p=\hat{4}$, then the equation would be:

$$
\begin{aligned}
& \{\hat{4}, \uparrow \hat{5}\} \vee\{\hat{4}, \downarrow \hat{3}\}=2 \operatorname{nd}(\bmod 7) \\
& p=\hat{4} \rightarrow\{\hat{4}, \uparrow \hat{5}\} \vee\{\hat{4}, \downarrow \hat{3}\}=2 \operatorname{nd}(\bmod 7)
\end{aligned}
$$

Remember that \rightarrow is the symbol that represents an "if, then" relationship, and v represents "or." Putting that last equation in a verbal form, it would read:
If p equals the fourth scale degree, then up from scale degree four to five, or down from four to three, would equal the diatonic interval of a second.

As mentioned above, we can see that adjacent scale degrees form $2 n d s$. So, an interval that has one scale degree in between will be a $3 r d$. ...two scales degrees in between will be a 4 th. ...three scale degrees in between will be a 5 th, and so on.

A quick and easy point of reference would be to base each interval on $\hat{1}$. In this instance, from $\hat{1}$ up to $\hat{2}$ would be a $2 n d$. ...from $\hat{1}$ up to $\hat{3}$ would be a third. ...from $\hat{1}$ up to $\hat{4}$ would be a $4 t h$, and so on. That's certainly easy to remember, but not all intervals have $\hat{1}$ as the given note, and not all intervals will be ascending.

Putting this concept into a visual form should make it easier to grasp. Let's consider the following graphic representation (next page).

Diatonic Intervals

Descending from 1

Ascending from $\hat{2}$

Descending from 2

Descending
from 3
...and so on.
Using this chart for reference, we can see that:

- from $\hat{2}$ up to $\hat{4}$ is a $3 r d$
- from $\hat{2}$ up to $\hat{6}$ is a 5 th
- from $\hat{2}$ down to $\hat{5}$ is a 5 th
- from $\hat{3}$ up to $\hat{1}(\hat{8})$ is a 6 th
- from $\hat{3}$ down to $\hat{7}$ is a 4 th
- from $\hat{3}$ down to $\hat{4}$ is a 7 th

I'm sure we would agree, all of the interval relationships are easier to recognize if they have $\hat{1}$ as their given pitch. Let's look at these in mathematical terms. (Remember that we are looking at scale degrees in mod 7 and not half-steps as in mod 12.)
$\{\hat{1}, \uparrow \hat{2}\} \vee\{\hat{1}, \downarrow \hat{7}\}=2 \operatorname{nd}(\bmod 7)$
$\{\hat{1}, \uparrow \hat{3}\} \vee\{\hat{1}, \downarrow \hat{6}\}=3 \mathrm{rd}(\bmod 7)$
$\{\hat{1}, \uparrow \hat{4}\} \vee\{\hat{1}, \downarrow \hat{5}\}=4$ th $(\bmod 7)$
etc.

If we use the letter names from our diatonic \mathbf{C} scale (two pages back) and verbalize the equations (immediately above) they would read:

C up to \mathbf{D} or \mathbf{C} down to \mathbf{B} are 2 nds
C up to \mathbf{E} or C down to A are 3 rds
C up to F or C down to G are 4 ths
etc.
Of course, the relationships will be the same no matter what the particular diatonic scale or given pitch might be.

Let's add a diatonic inversion table here for reference.
Diatonic Interval Equations

Ascending Interval	Descending Interval
Unison $=\{p,(p+0)\}(\bmod 7)$	Unison $=\{p,(p-0)\}(\bmod 7)$
$\uparrow 2 n d=\{p,(p+1)\}(\bmod 7)$	$\downarrow 2 n d=\{p,(p-1)\}(\bmod 7)$
$\uparrow 3 r d=\{p,(p+2)\}(\bmod 7)$	$\downarrow 3 r d=\{p,(p-2)\}(\bmod 7)$
$\uparrow 4$ th $=\{p,(p+3)\}(\bmod 7)$	$\downarrow 4$ th $=\{p,(p-3)\}(\bmod 7)$
$\uparrow 5$ th $=\{p,(p+4)\}(\bmod 7)$	$\downarrow 5$ th $=\{p,(p-4)\}(\bmod 7)$
$\uparrow 6$ th $=\{p,(p+5)\}(\bmod 7)$	$\downarrow 6$ th $=\{p,(p-5)\}(\bmod 7)$
$\uparrow 7$ th $=\{p,(p+6)\}(\bmod 7)$	$\downarrow 7$ th $=\{p,(p-6)\}(\bmod 7)$
$\uparrow 8$ th $=\{p,(p+7)\}(\bmod 7)$	$\downarrow 8$ th $=\{p,(p-7)\}(\bmod 7)$

Now that we've taken a stroll through intervals in a diatonic setting, let's move on to augmented and diminished intervals.

Section 7

Intervals

Augmented and Diminished

Now that we understand intervals in a diatonic setting, let's add a bit of a chromatic twist to them. For this we'll use our diatonic relationships as a starting point but go to our CPS as a resource.

If you remember our discussion of the tritone, and how two intervals can have the same number of halfsteps but two different labels, here's our chance to sort that out.

First, let's remind ourselves of the intervals we've covered so far. Here's our half-step chart:

LABEL	PU	m2	M2	m 3	M 3	P 4	A 4	d 5	P 5	m 6	M 6	m 7	M 7	P 8
\# of half- steps	0	1	2	3	4	5	6	7	8	9	10	11	12	

Also, keep the CPS close by to refer to as we go. In fact, let's just jump in and use it as our starting point. First, we'll look at just the pitches and intervals that have no accidentals (sharps or flats) indicated, then we'll come back and sort out the enharmonic spellings.

Using the diatonic letter names, from \mathbf{C} clockwise around to B , we have what is referred to as a \mathbf{C} major scale (we'll cover scales in more depth later). This scale gives us the basis for quite a bit of what we'll be covering throughout our study. For now, let's just consider the intervals that are included. The ascending intervals from C are:

- C up to D is a $M 2$
$(\hat{1}, \uparrow \hat{2})=M 2$
- C up to E is a M3
$(\hat{1}, \uparrow \hat{3})=M 3$
- C up to F is a P 4
$(\hat{1}, \uparrow \hat{4})=P 4$
- C up to G is a P5
$(\hat{1}, \uparrow \hat{5})=P 5$
- C up to A is a M6
- C up to B is a M7
$(\hat{1}, \uparrow \hat{6})=M 6$
$(\hat{1}, \uparrow \hat{7})=M 7$

All of these pitches and intervals are in a natural state (no accidentals). That is probably the main reason we use this scale as an ongoing point of reference.

Let's not forget our descending intervals, using the C major scale again.
The descending intervals from \mathbf{C} are:

- \mathbf{C} down to \mathbf{B} is a m 2
$(\hat{1}, \downarrow \hat{7})=m 2$
- C down to A is a m3
$(\hat{1}, \downarrow \hat{6})=m 3$
- C down to G is a P 4
$(\hat{1}, \downarrow \hat{5})=P 4$
- C down to F is a P5
$(\hat{1}, \downarrow \hat{4})=P 5$
- \mathbf{C} down to \mathbf{E} is a m6
$(\hat{1}, \downarrow \hat{3})=m 6$
- \mathbf{C} down to \mathbf{D} is a m 7

$$
(\hat{1}, \downarrow \hat{2})=m 7
$$

Taking these intervals and altering them chromatically, by adding accidentals (sharps or flats), will require us to give them new labels. Let's look at how the alterations will change the labels.
\sqrt{J} If the interval is major (M), increasing the number of half-steps by 1, without changing the letter names, will make the interval augmented (A). Here are two examples:

C up to D is a M2; C up to $D \#$ is an $A 2 ; C b$ up to D is also an $A 2$

C up to A is a M6; C up to $A \#$ is an A6; Cb up to A is also an $A 6$

\mathcal{J} If the interval is major (M), decreasing the number of half-steps by 1 , without changing the letter names, will make the interval minor (m). Here are two examples:
C up to E is a M3; C up to $E b$ is an m3; C\# up to E is also a m3

C up to B is a M7; C up to $B b$ is a $m 7$; $C \#$ up to B is also a $m 7$

If you're following this closely you might be thinking... "C to $D \#$ are the same notes as C to $E b$. They certainly look the same on the CPS and a keyboard. Why do they have different labels?"

The reason lies in the diatonic letter names. C up to D is diatonically a $2 n d$, no matter what accidentals are added. C up to E is diatonically a $3 r d$, no matter what accidentals are added. An A 2 and a m 3 may look and sound the same on the CPS or a keyboard, but they will have different functions within a piece of music. We'll deal with function later on in our study.

From our examples above, the same will be true of an $A 6(C$ up to $A \#)$ and a $m 7(C$ up to $B b)$. They will look and sound the same on the CPS and a keyboard, but they will have different musical functions.

One of the reasons we add graphics is to give you a visual point of reference. If you just glance at each set of examples on the staff above you can easily see the intervals in each set look the same distance apart. Of course, on the staff they actually are. The accidentals are what change the labels.

Let's move on. Here's the rest of the combinations you'll need to know for now.
\boldsymbol{J} If the interval is minor (m), increasing the number of half-steps by 1 , without changing the letter names, will make the interval major (M).

E up to G is a m3; E up to $G \#$ is a $M 3$; $E b$ up to G is also a M3

Please note: The intervals are the same if you read them from the top note down.
G down to E is a $m 3$; $G \#$ down to E is a $M 3 ; G$ down to $E b$ is also a $M 3$
J^{J} If the interval is minor (\mathbf{m}), decreasing the number of half-steps by 1 , without changing the letter names, will make the interval diminished (\mathbf{d}).
E up to C is a m6; E up to $C b$ is a d6; $E \#$ up to C is also a d6

$\sqrt[J]{J}$ If the interval is perfect (\mathbf{P}), increasing the number of half-steps by 1, without changing the letter names, will make the interval augmented (A).
C down to F is a $P 5$; $C \#$ down to F is an $A 5$; C down to $F b$ is also an $A 5$

\mathcal{J} If the interval is perfect (\mathbf{P}), decreasing the number of half-steps by 1 , without changing the letter names, will make the interval diminished (\mathbf{d}).
G down to D is a $P 4 ; G b$ down to D is a $d 4 ; G$ down to $D \#$ is also a $d 4$ (next page)

Below is a table to help you visualize the interval changes noted above. It can be read from the middle column (Original Interval) to either the left (Decreased) or right (Increased). Remember, the letter names of the pitches will remain the same (see above).

It can also be read left to right, starting with the left-hand column, adding 1 half-step for each column to the right.

Right to left is an option as well, subtracting 1 half-step for each column to the left.

Decreased by 1 half-step	Original Interval	Increased by 1 half-step
d (diminished)	P (perfect)	A (augmented)
m (minor)	M (major)	A (augmented)
d (diminished)	m (minor)	M (major)
doubly diminished (very rare)	d (diminished)	P (perfect) or m (minor) depending on the original interval
P (perfect) or M (major) depending on the original interval	A (augmented)	doubly augmented (very rare)

So, let's flip the coin and look at these from the other side. Above we considered how the accidentals changed the quality (sound) of a given diatonic interval. Now let's look at enharmonic intervals that change the diatonic intervals but not the sound or how they appear on the keyboard.

First, let's update our half-step interval chart to include the enharmonic variables.

LABEL	$\begin{aligned} & \text { PU } \\ & \text { d2 } \end{aligned}$	$\begin{aligned} & \mathrm{m} 2 \\ & \mathrm{AU} \end{aligned}$	$\begin{aligned} & \text { M2 } \\ & \text { d3 } \end{aligned}$	$\begin{aligned} & \text { m3 } \\ & \text { A2 } \end{aligned}$	$\begin{aligned} & \text { M3 } \\ & \text { d4 } \end{aligned}$	$\begin{aligned} & \text { P4 } \\ & \text { A3 } \end{aligned}$	$\begin{aligned} & \mathrm{A} 4 \\ & \text { d5 } \end{aligned}$	$\begin{aligned} & \text { P5 } \\ & \text { d6 } \end{aligned}$	$\begin{aligned} & \text { m6 } \\ & \text { A5 } \end{aligned}$	$\begin{aligned} & \text { M6 } \\ & \text { d7 } \end{aligned}$	$\begin{gathered} \text { m7 } \\ \text { A6 } \end{gathered}$	$\begin{aligned} & \text { M7 } \\ & \text { d8 } \end{aligned}$	$\begin{aligned} & \text { P8 } \\ & \text { A7 } \end{aligned}$
\# of halfsteps	0	1	2	3	4	5	6	7	8	9	10	11	12

Here are some musical examples of these enharmonic intervals. Each pair is bracketed together as a set. Notice that each set has two different spellings, using different diatonic pitch names, but when they are played on a keyboard or graphed on the CPS they appear to be the same.

**

There's one more issue we need to wrap up. Since we have added the augmented and diminished intervals to our vocabulary, let's look at how they fit into the context of inversions. A couple of charts and examples will probably be sufficient to see how all of this works together.

Interval Quality	Inverts to	Interval Quality
\mathbf{P}	\leftrightarrow	\mathbf{P}
\mathbf{M}	\leftrightarrow	\mathbf{m}
\mathbf{A}	\leftrightarrow	\mathbf{d}

Please note that these charts are bi-directional. They can be read left to right or right to left.

Interval Distance	Inverts to	Interval Distance
U	\leftrightarrow	8
2	\leftrightarrow	7
3	\leftrightarrow	6
4	\leftrightarrow	5

Here are a few examples of what these will look like with both quality and distance:

$$
\mathrm{P} 4 \leftrightarrow \mathrm{P} 5 \quad \mathrm{M} 3 \leftrightarrow \mathrm{~m} 6 \quad \mathrm{~A} 5 \leftrightarrow \mathrm{~d} 4 \quad \mathrm{~m} 7 \leftrightarrow \mathrm{M} 2 \quad \mathrm{PU} \leftrightarrow \mathrm{P} 8 \quad \mathrm{M} 6 \leftrightarrow \mathrm{~m} 3 \quad \mathrm{~A} 4 \leftrightarrow \mathrm{~d} 5
$$

Section 8

Diatonic Scales
 Major

$\int J \mathrm{~A}$ (diatonic) scale in music is a sequence of pitches that encompasses all seven of the letters of the musical "alphabet." A (diatonic) scale can begin on any of the seven pitches (letters) and progress through the remaining pitches.
A note should be made for clarity, that each of the seven pitches (letter names) will only be used once in a diatonic scale. For example, you should not see an F and an $\mathrm{F} \#$ in the same diatonic scale.

These sequential sets of seven pitches will exist within one octave and are organized into predetermined patterns. These patterns are generally arranged in terms of half-steps and whole-steps. As a reminder, a half-step is a m 2 and a whole-step is a M2.

$$
m 2=\{p,(p \pm 1)\}(\bmod 12) \quad M 2=\{p,(p \pm 2)\}(\bmod 12) \quad(\text { see the equations on page 21) }
$$

As in Section 7, we'll be using the diatonic scale based on C. This scale is typically used as a reference because it does not include any accidentals in its structure. This scale, with its arrangement of half-steps and whole-steps, is a very accessible version of what is called a major scale.

A major scale has a sequence of half-steps and whole-steps that gives it its unique structure and quality. Let's look at that structure in the C major scale below. Let's designate h for half-step and \mathbf{w} for whole-step.

J This arrangement of half-steps and whole-steps will be exactly the same for any major scale, built on any pitch.

Let's look at this scale in some other forms. It's often easier to see the spacing of the half-steps and wholesteps in different graphic representations.

Let's add a new type of graph/chart. This one gives us a visual representation of a scale structure in an ascending and descending form. It also shows us how a diatonic scale interacts with the CPS. (next page)

C Major Scale

This type of graph certainly serves to reinforce the statement on the previous page, the "arrangement of half-steps and whole-steps will be exactly the same for any major scale..."

Even though the arrangement stays the same, the scales will look different on a keyboard and on the CPS. Let's look at those for the F major scale.

The biggest difference you probably see is the use of one of the black keys on the keyboard. You have to look a bit closer at the CPS to note the difference between C major and F major. There are two things that have changed. The first thing, of course, is the starting point of F, designated by the arrowhead. The second is the the $\mathrm{B} b$. Other than that pitch, the CPS as a whole looks virtually the same. If you think about it, to change from C major to F major we just need to change \mathbf{B} to $\mathbf{B} b$.

Notice the numbers of the CPS in the far left column, ascending from bottom to top. The diatonic scale degrees are in the bottom row, ascending from left to right to the middle of the graph, then descending from the middle to the far right. On the far right edge of the graph we have the arrangement of half-steps and whole-steps.

With this graph, it is easiest to see that the scale structure doesn't change, no matter what the starting pitch might be.

Here's one other example of our block graph that shows the F major scale. Notice that the only thing that has changed is the starting point on the CPS.

F Major Scale

That basic observation will hold true for G major as well. We will only have to change one pitch to shift from C major to G major. Looking at the keyboard, we can easily see that the F from C major will become FH in G major. The same is true with the CPS, although it's not quite as obvious.

\sqrt{J} When a piece of music is based on a specific major scale, we say that the piece is in that key. If a piece is based on a C major scale, we say it is in the key of C major. If the F major scale is the basis for a piece, the key will be

F major.

J. Also, the pitch (or tone) the scale is based on will be referred to as the tonic pitch or the tonal center. For example, if G major is the scale and the key, then \mathbf{G} will be the tonic pitch/tonal center. These concepts of keys and tonal centers will be discussed more completely in Section 10.

One issue that hasn't been addressed is why these scales we've been discussing are referred to as "major." At this point in our study, let's just say that the label is mostly based on the 3 rd scale degree ($\hat{\mathbf{3}}$). In the major scale, the interval from the tonic pitch $(\hat{\mathbf{1}})$ to the $3 r d(\hat{\mathbf{3}})$ is a major $3 r d(\mathrm{M} 3)$. Also, if you remember our discussion of diatonic intervals, you'll recall that every ascending interval of a major scale, from the tonic $\operatorname{pitch}(\hat{\mathbf{1}})$, is either major (\mathbf{M}) or perfect (\mathbf{P}). There will be other justifications for the label when we reach our discussion of diatonic chords.

For now, let's continue and discuss the construction of diatonic major scales from a more mathematical perspective. Since a major scale is a set of pitches in a fixed pattern of whole-steps and half-steps, an equation might be a good option for determining which pitches should be included in a set (scale), beginning with the tonal center.

JJ Since any pitch from our CPS can be used as a tonal center, let's designate p as the variable for that pitch. Let's use the uppercase M to represent "major scale" for this equation. Since the major scale is simply a set of pitches, we'll set this equation up as a mathematical set. Here's what the major scale would look like as a math equation:

$$
M=\{p,(p+2),(p+4),(p+5),(p+7),(p+9),(p+11)\}(\bmod 12)
$$

Let's break this down to see what's happening. In the equation, each pitch is separated by a comma. So, p will be our starting point (tonal center). The next pitch is ($\mathrm{p}+2$). From our discussion of intervals, you'll
remember that p plus 2 half-steps is a M2 (whole-step). In our scale pattern, the next interval will be another whole-step. So, we'll add another M2 to find the next pitch in the sequence, and so on.

If you only look at the numbers in the formula, you should see our scale pattern. Instead of trying to verbalize this whole sequence, let's add another graphic that should help.

It might also help to look back at Section 7 and the chart that shows the intervals of a major scale up from the tonic pitch. That is what's happening here. Each consecutive pitch in the sequence is an increasingly larger interval from the tonic. Those intervals would be M2, M3, P4, P5, M6, and M7.

If you've noticed, there's a half-step missing at the end of the equation above. What's missing is the repeated tonic pitch at the top of the scale. That pitch would be $(\mathrm{p}+12)$ (an octave) and from $(\mathrm{p}+11)$ to $(p+12)$ would be one half-step.

Let's put some real numbers into this equation to see how it actually works. Let's build a major scale on $A b$. On our CPS that's 8 , so $p=8$.
$M=\{8,(8+2),(8+4),(8+5),(8+7),(8+9),(8+11)\}(\bmod 12)$
Remember: Congruent numbers in Modulo 12

$$
M=\{8,10,0,1,3,5,7\}(\bmod 12)
$$

In the next section we will focus on minor diatonic scales.

Section 9

Diatonic Scales Minor

Now, the real fun begins. In my opinion, the minor scales are the most colorful. Did you notice that I said, "scales," plural? That is correct. In the tonal tradition of the "Common Practice Period" (roughly 1650 to the early 20th century), there are three widely-accepted types of minor scales.
\mathcal{J} Each has the same half-step/whole-step structure through $\hat{5}$. From the pure form, one scale alters $\hat{7}$, and the other alters both $\hat{6}$ and $\hat{7}$.
d The pure or natural minor is going to be our starting point. Just from the name, we should be able to tell that this is the simplest and the one that is unaltered. As with the C major scale, with its lack of accidentals, we'll start by looking at the A pure minor scale.

Since we discussed the reasons for calling our major scales "major," let's take just a quick look at a couple of reasons we call these "minor" scales. The first is the fact that the interval from $\hat{1}$ to $\hat{3}$ is a m3. Also, in the pure/natural minor scale, from $\hat{1}$ to $\hat{6}$ is a m 6 . Both of these reasons play significant roles in the way we will construct harmony and even become important in some of our advanced harmonic structures.
\sqrt{d} With our pure A minor scale, one of the first things we can note is the fact that it uses all of the same pitches as our C major scale. In fact, if we compare these two scales on the CPS we'll see that they look exactly the same. The only difference is the pitch the scale is built on - the tonal center.

\sqrt{J} The DNA of these two scales would indicate they are related. In fact, A minor is the relative minor of C major. C major is considered the relative major of A minor. This relationship will be the same for any major scale and the minor scale built on the major scales's $\hat{6}$. (There will more about this in future discussions.)

So, the pure/natural minor scale will be our basis for the other two versions. Let's first look at the musical notation of each, before we get to the other graphics.

Here, again, is the A pure minor scale:

\sqrt{J} The first alteration (second version of the scale) we'll look at is the harmonic minor. The name indicates that this version is altered to coincide with a harmonic function (more about this later). The harmonic minor is just like the pure minor with one exception, the $\hat{7}$ is raised by one half-step. In pure minor, there is a whole-step between $\hat{7}$ and $\hat{1}$. The harmonic minor changes this so the scale will have a half-step there. This raised $\hat{7}$, to our ears, leans strongly toward $\hat{\mathbf{1}}$. It is leading us toward resolution. It wants to resolve to $\hat{1}$. When the $\hat{7}$ has this half-step relationship to $\hat{1}$, it is referred to as the leading tone.

$\sqrt{\int}$ The third version of the minor scale is referred to as melodic minor. Needless to say, composers used this option with melodic considerations in mind. Compared to pure minor, this version raises both the $\hat{6}$ and $\hat{7}$ when the line is ascending, but when the line is descending, the scale reverts back to the original pitches of the pure minor.

If you'll notice, the scale degree numbers and the actual pitches on the staff do not change, even though the pitches are altered with accidentals. Just looking at these on the staff, it is sometimes tricky to visualize what is happening to the half/whole patterns. Our block graphs and CPS layouts should give us a better visual representation. (next page)

Here are the block graphs for the three versions of the A minor scale.
The significant change to note in harmonic minor is the A 2 (three half-steps) between $\hat{\mathbf{6}}$ and $\hat{\mathbf{7}}$. When writing traditional (common practice period) melodic lines, there are certain cautions and considerations that should be noted for the A2, especially in descending movement (for later discussion).

In melodic minor, a feature that gives the scale its unique sound is the four consecutive whole-steps from $\hat{3}$ to $\hat{\mathbf{7}}$. This is the only scale that incorporates that many consecutive whole-steps, until the latter part of the common practice period when composers began breaking away from the use of traditional diatonic structures.

A Pure (Natural) Minor Scale

A Harmonic Minor Scale

A Melodic Minor Scale

Our CPS diagrams of the three minor versions will also show us how the altered scale degrees (accidentals) reshape the pure minor form.

You'll notice that there is no CPS diagram for the descending melodic minor. Remember, it is exactly the same as the pure minor.

Before we put this section to bed, let's remind ourselves that these scales can be based on any pitch of our CPS. The patterns will be exactly the same, no matter what the tonal center might be. Also, for reference, the equation for a pure minor scale would be (using the lowercase m for minor scale):

$$
m=\{p,(p+2),(p+3),(p+5),(p+7),(p+8),(p+10)\}(\bmod 12)
$$

The other versions can be figured based on the pure minor.

Section 10

Keys
 Major

Scales and keys are almost synonymous. A key is basically the collection of notes included in the scale. That key is identified by the tonal center of the scale. So, if the scale is an Eb major scale, the key is Eb major.

Before we get too far into this topic, let's look at some new terms. Each scale degree actually has a name, beyond its corresponding number. These names often identify a specific function and will serve us on down the road as we discuss diatonic harmony. For now, let's just learn the scale degree names and what they represent.

Since these apply to all keys, we'll just use the scale degree numbers instead of specific printed musical notation. Here's a simple chart with the scale degree numbers and the corresponding names to get us started.
/J

Scale Degree	$\hat{1}$	$\hat{2}$	$\hat{3}$	$\hat{4}$	$\hat{5}$	$\hat{6}$	$\hat{7}$
Name	Tonic	Supertonic	Mediant	Subdominant	Dominant	Submediant	Leading tone

Let's look at each of these and try to give some meaning to the labels. They are not listed below in numeric order. The first three play significant roles in the construction of diatonic harmony and the others relate to them, as you'll see.

Here are three terms that will help clarify the meaning of some of the names. super $=$ above; sub $=$ below; mediant $=$ middle (halfway)

Tonic - the tone on which the scale and the key are based (tonal center)
Dominant - has the strongest influence in the functions of tonal harmony; a P5 above the Tonic
Subdominant - another strong influence in the functions of tonal harmony; a P5 below the Tonic
Supertonic - the tone immediately "above" the tonal center
Mediant - the tone that is halfway to the Dominant, up from Tonic
Submediant - the tone that is halfway to the Subdominant, down from Tonic
Leading tone - the tone that "leads up to" or "leans up toward" the Tonic (see discussion in Section 9)
Let' rearrange the chart to demonstrate the labeling.

Scale Degree	$\hat{4}$	$\hat{6}$	$\hat{7}$	$\hat{1}$	$\hat{2}$	$\hat{3}$	$\hat{5}$
Name	Subdominant	Submediant	Leading Tone	Tonic	Supertonic	Mediant	Dominant

Let's get back to keys. As you already know, every major scale will have the same pattern of whole-steps and half-steps. As tonal centers change, so will the number of accidentals in the music, which seems pretty simple and uncluttered if you're only dealing with one or two.

What if you have a piece of music in which the tonal center is Gb? It might look something like the excerpt on the following page.

As a composer, that's a whole lot of flats to have to write into your music. As a performer, this score would seem a bit too cluttered.
\sqrt{J} This is one of the basic reasons for having key signatures. A key signature simply puts all of the accidentals, required for the particular scale or key being used, at the beginning of each staff. With a key signature for Gb major, the piece above would look like this:

We should already be very familiar with the key of C major. As I mentioned before, it's the most accessible, since it's key signature has no accidentals. We've also been introduced to F major and G major. Those are the keys that only have one accidental in the signature. F has one flat and G has one sharp.

As I'm thinking about these keys, the topic of relationships comes to mind. These two keys are considered closely related to C. If you remember the DNA metaphor associated with relative major/minor scales, this is only one step removed from that. Both the keys of F and G have six of their seven pitches in common with C. There is only one pitch that separates each of them from G. But... as fascinating as all of this might seem, we need to wait and talk more about these family trees later. For now, let's focus on figuring out the rest of the key signatures.

How do we know how many accidentals to put in the key signature? How do we know what order to put them on the staff? Those are certainly good, and very common questions. We already know that the tonal center and our whole/half-step pattern will determine where the accidentals will show up in the scale. Now, we just need a method to put all of them into a specific order.
\mathcal{J} Let's use C major, F major, and G major as our starting points. From C major we added one flat and got F major. What's the relationship between C and F? F is a P5 down from C. So, we go down a P5 and that adds 1 flat to the key signature. The graphic on the next page shows the F major scale with $\mathrm{B} b$ written in, then with $B b$ in the key signature.

Going down another P 5 will take us to $\mathrm{B} b$ with 2 flats in the signature.

\boldsymbol{J} This works the same way with sharps, but in the opposite direction. If we go up a P5 from \mathbf{C}, it takes us to G with a signature of 1 sharp.

...up another P5 takes us to D and 2 sharps.

It seems there is a logical yellow brick road for us to follow.

Whichever direction we're headed, going another P5 in that direction adds another accidental to the key.
Whether we're going up or down, this hike through the key signatures will come to the end of the trail when we get to 7 flats or 7 sharps.
\mathcal{J} As usual, here are more graphics to help us visualize the process.

If you're thinking this through, you may be wondering, "Why does this stop at 7? Aren't there 12 pitches in the octave and on the the CPS? What happens if you keep going up or down a P5?"

Those are very good questions. ...very perceptive. I'm glad you chased that rabbit, because it gives us an opportunity to see just how interconnected and overlapping all of this is.

If we keep going in the direction we started it will eventually take us to the other side (flats to sharps or sharps to flats) and ultimately back to C major. If we started down the path with flats, at one point we'll flip over to the sharp side and go back the other direction. I know... that's a bit confusing.

Think about the tritone. Remember, it cuts our CPS in half. It's the exact middle of the octave. If we're following a progression of P 5 s, with C as our starting point, going one direction will bring us to Gb . Going the other direction will bring us to $\mathrm{F} \#$. Those are enharmonically the same. ...the tritone away from C. ...six half-steps from our starting point. There are six half-steps left.

If we're determined to follow the key signature path and stick with our original accidentals (flats or sharps), there's only one more step. ... Gb to Cb or $\mathrm{F} \#$ to $\mathrm{C} \#$. That's it. ...no more key signatures.

BUT... What if we want to keep going with our P5 progression? The tritone could be our portal to the other side. In this trek, when we get to the tritone, we can switch from one set of accidentals to the other. We could switch from Gb to $\mathrm{F} \#$ (or vice-versa) and keep going with our progression of P5s.

If we have followed the flat path down to $G b$, switch to the enharmonic $F \#$, then keep progressing down by P5s, we'll be following the sharp path backwards to C. Of course, the opposite would be true as well. ...forward through the sharps, switch at the tritone, then backward through the flats.

We need a graphic for this. On the next page, see the key signature chart with colored lines and arrows to help you visualize the path the P5s will take. Follow the plum color for the descending path and the teal color for the ascending path.

Let's see how this progression looks on the CPS (just the first three in the sequence). Can you fill in the rest?

Descending

Ascending

This progression is generally referred to as the Circle of 5ths. Our study presents it a bit differently than the traditional approach.

Unfortunately, static pictures can't quite capture the whole progression very effectively. The e-book version of this actually has video examples of the whole progression. Those can be found here.
\mathcal{J} Here's a quick note. The accidentals are always put on the staff (both treble and bass clefs) in the same order and in the same place on the staff. Please pay close attention to the charts below in order to remember that placement.

Now that we understand key signatures and know how to put the accidentals on the staff, can we remember, by just looking at a key signature, which key it is? Of course we can. We can just commit them to memory. As musicians, we'll be dealing with these on a regular basis and should know them instinctively. In reality, though, most of the music we'll regularly see will probably only include about seven or eight keys. Here are a few practical tips to help remember them all.

J With the flat keys, the next to the last flat in the key signature is the key. For example, if there are five flats in the key signature, the fourth flat will indicate the key. The fourth flat to be added is Db , so five flats is the key of $D b$ major. This works for all the flat keys except F major. We'll just have to memorize that one.
\mathcal{J} With the sharp keys, the last sharp in the key signature will be the leading-tone of the key. So, the key will be one half-step up from the last sharp. For example, if the last sharp in the key signature is $\mathbf{D} \#$, then the $k e y$ will be E major.
\mathcal{J} If the key signature has six accidentals, that key is a tritone away from C. If there are six flats, the key is $G b$ major. If there are six sharps, the key is $F \#$ major.
\boldsymbol{J} For the two key signatures with all seven accidentals, take C and add the accidental to the name. Seven flats will be $C b$ major. Seven sharps will be $C \#$ major.

I think those are all the practical tips I have up my sleeve. Let's move on to see how these key signatures relate to the minor scales.

Section 11

Keys Minor

If you remember our discussion of the Pure/Natural Minor scale, you'll recall that we referred to the pure A minor scale as being the relative minor of C major. We also noted that a pure/natural minor scale, built on the $\hat{6}$ of any major scale, would have exactly the same pitches as that major scale. The difference is the tonal center. For example, C major and A natural minor have exactly the same pitches, but C major has C as its tonal center and A natural minor has A as its tonal center. These scales illustrate the relative major/minor scale relationship. (see the notes and CPS graphs on page 43)
\sqrt{J} Understanding this relationship between the major scale and the relative minor scale should make our discussion of minor keys so much easier. The fact is, a minor scale has the same key signature as its relative major scale.
\mathcal{J} So, you might ask, "How do we know what the relative major is?" If we think about the relative major and minor scales as overlapping each other, the minor begins and ends on the $\hat{6}$ of the major. That being the case, the major would begin and end on the $\widehat{3}$ of the minor.

Once again, I think a picture can save a few words. Below are musical examples along with the CPS showing that the relative major/minor scales and keys are always at a 90° angle (more later).

Notice that each scale has its own scale degrees, based on its own tonal center.

Let's rewind for a moment and take a Mathematical Mystery Tour (Beatles reference) to see what's happening on our CPS. For each of the scales above, the CPS shows a 90° (ninety degree) relationship between the major and the relative minor (and vice-versa). Why is it 90?

If you were to stand on the middle dot of the CPS, facing $0(\mathbf{C})$, then turn to face each of the points on the circle, you would ultimately return to 0 . You would have turned 360° to come back to your original starting point. Since the circle has 12 points along the tour, 360 would be divided by 12. Each stop of the tour would be 30° away from the previous point and 30° on to the next (12 of those equaling 360°).

Following this logic, each half-step of the CPS will equal 30°. So, each interval will have an equivalent angle, measured in degrees. Since the major and relative minor are a m 3 (3 half-steps) apart, 30° times 3 equals 90°. To see the degree equivalents for each of the intervals and inversions, view the included video here (e-book version only).

JJ Getting back to our minor key signatures... The key signature for any minor scale will be the same as its relative major, which is a m 3 above the minor scale tonal center.

If you're trying to put all the pieces in this puzzle, you're probably wondering about the other two versions of the minor scale. Will there be different key signatures for the others, since they have additional accidentals? The quick but definitive answer is "no." The accidentals needed for the Harmonic Minor and Melodic Minor scales will simply be added to the music wherever they are necessary. Those will not be added to the key signature.

As a taste of things to come, the accidentals used in the minor scale will be one of the signs you'll look for when analyzing a piece of music, trying to determine the tonal center. ...more fun in store.

Section 12

Rhythm

Note Values

The most direct and obvious connection between math and music comes to light in the study of note values and rhythm. Note values are simply the building blocks for the element of rhythm. We could say that rhythm is the linear combination of proportional values in time. Wow! What does that really mean?

Well... we need to remember that music only exists in time. We can't experience a piece of music like we do a painting or sculpture. A whole piece of music does not exist at a single fixed point in time. It takes a length of time to unfold and be heard. JJ Rhythm is how time is divided up in a piece of music.

Notes can resonate for a long period of time or they can pass by in quick succession. There can be continuous sound or moments of silence. It's those combinations of long and short, sound and silence, stopping and starting, that make a piece of music come to life.

There's still that phrase, "proportional values." What are those?
As with most musical elements, rhythm exists in a context of relativism. Each rhythmic value takes on a function relative to its surroundings, whether that's the meter it's in (more on this later) or the other values with which it functions. Even within a context of relativism, the numeric and proportional relationships between the note values remain constant. Jo Note values function like fractions. They will always be in specific proportion to the other values.

The chart immediately below illustrates each note's symbol, value, name, and the equivalent rest (silence) symbol.

NOTE	VALUE	NAME	REST
0	1	Whole	\square
0	1/2	Half	-
-	1/4	Quarter	?
0	1/8	Eighth	9
1	1/16	Sixteenth	4
\cdots	1/32	Thirty-second	\%

These values and proportional relationships will remain constant within any context.
Looking at the bigger picture on the next page, we begin to see, in musical notation, the equivalences.

The whole note is equivalent to two half notes. Each half note is equivalent to two quarter notes, and so on. It is also true to say that one whole note is equivalent to four quarter notes, and one half note is equivalent to four eighth notes, etc.

Let's look at it this way:
1 whole note $=2$ half notes $=4$ quarter notes $=8$ eighth notes $=16$ sixteenth notes $=32$ thirty-second notes

The combinations of these note values that create rhythm in a piece of music may not be infinite, but there have been more than enough to keep composers busy for centuries. We certainly can't scratch the surface of the possibilities, but let's look at a few just to familiarize ourselves with the way they work... and let's add the mathematical equations to give us a broader perspective on the relationships.

Let's talk about math for a moment. We are assuming that you are already familiar with fractions and how they work. We will be adding and multiplying fractions as we deal with rhythm. If you need a basic refresher click here (e-book only). This website is practical and straightforward. It might help.

For now, let's bundle some combinations into groups that will equal one whole note (1). Here are some examples:

Let's bracket some of these together to group them into sets.
$\left\{\frac{1}{2}\right\}$
$\frac{1}{2}$
$+$
$+$
$\left\{2\left(\frac{1}{4}\right)\right\}$
$\frac{1}{2}$
= 1
$=1$

Notice the two sets. The first set just contains a half-note $\{1 / 2\}$. The second set has two quarter notes $\{2(1 / 4)\}$. If you'll remember from your basic math studies, the group in parentheses will be multiplied by the number that precedes it. So, $2 \times 1 / 4=2 / 4$, and $2 / 4$ can be reduced to $1 / 2$. That will give us $1 / 2+1 / 2$. When you add those two sets together you get $2 / 2$ which reduces to 1 (a whole note).

Let's look at a few more. This time we'll group them into sets (differentiated by color), but won't verbalize them (that will be the task you do in your head).

Did you notice how we grouped, calculated the equivalents, and grouped again in order to arrive at equal note values? This allowed us to easily combine those equal values to total up to the whole? This process is not absolutely necessary, but it is one way of demonstrating a logical path for identifying and calculating note values using the corresponding math functions.

You've probably noticed that up to this point all of our note values are divisible by 2 and 4 . You may be wondering if that's always the case or if they are ever in subdivisions of 3 or 6 .

It's time to introduce the $\operatorname{dot}(\cdot)$. The dot added to any note value adds one half of the note's value to it. For example, a quarter note is equal to two eighth notes, and half of that will be one eighth note. So, a quarter with a dot (dotted quarter) will equal 3 eighth notes. Here's the concept in a visual form.

How about two more examples?

\sqrt{J} Let's stop the bus for a moment and talk about the different parts of the note. You may or may not be aware, there are three parts to a musical note.

1) There's the note head, which can be open (0) or closed (\bullet).
2) Unless the note is a whole note, it will have a stem (|) connected to the note head.
3) If the note value is less than a quarter note it will have at least one flag (${ }^{\dagger}$) connected to the stem. One flag indicates an eighth note ($(\boldsymbol{\downarrow})$. Two flags... a sixteenth $(\boldsymbol{\bullet})$.and so on.

Let's get back on the bus and continue talking about note values. The reason we stopped was to make sure you understood basic note construction before we talk about options. As we write musical notation, it is sometimes favorable to group notes together into units. These units help us keep track of equivalent values. The way this is done is to beam notes together. If there are several notes together, with values less than a quarter, the flags can be converted to beams. Let's take the examples immediately above to demonstrate this.
If we have this relationship: $\quad=0 \cdot d_{0}$ It could be rewritten like this: $0 .=$ Beaming the three eighth notes together should make it easier to view them as a unit equal to the dotted quarter.
Here's one more example: $\bullet=0 .$.
If you'll go back two pages and look at our note value equivalency graph, you'll notice how the units are beamed together. This makes it easier to see how one group is equal to another.

Speaking of groups... the next three sections will show us traditional approaches to grouping our notes together. One will use subdivisions of 2 and 4 . One will use 3 and 6 , and the last will use a combination of both. Good times!

Section 13

Rhythm Simple Meter

In most music, the rhythmic combinations are organized into groups that all have the same number of beats. These groups are called measures. (Some folks will call these bars. ...not to be confused with drinking establishments).

So... What is a beat? A beat is simply the note value that serves as the dividing/organizing unit of the measure. Each and every beat in a measure will have the same equivalent value. (This definition will apply until we talk about asymmetrical measures in which the beats have unequal values. That's for another day.)

How our rhythmic groupings are measured, or metered, is what we're discussing. The next concept/term to consider is meter. The meter of a piece of music is what tells us how our measures are organized. Looking at some actual meters will help clarify all of this.

In this section we are discussing simple meter. In each of these meters, the beats will have subdivisions of $2,4,8$, etc.

There are two numbers used to identify meter. They look similar to fractions but have a different function. Meter designations (time signatures) will look like this:

\sqrt{J} The bottom number of each set indicates which note value is the beat. The top number tells us how many beats are in one measure. Let's look at the meters noted above in a little more detail to see how this works.

$$
\begin{aligned}
& \begin{array}{l}
\boldsymbol{4}=\text { four beats in a measure } \\
\mathbf{4}=\text { the quarter note is one beat }
\end{array} \\
& \mathbf{3}=\text { three beats in a measure } \\
& \boldsymbol{2}=\text { the half note is one beat } \\
& \underset{\boldsymbol{Z}}{ }=\text { two beats in a measure } \\
& \text { = the eighth note is one beat }
\end{aligned}
$$

Here are those same meter examples illustrated on a staff. Note the vertical lines (circled) on the staff that separate the measures. Those are generally referred to as bar lines (see the first paragraph on this page).

Notice how the note groupings are all equivalent to a quarter note and that each measure has the equivalent of four quarter notes.

The example of the $\mathbf{3 / 2}$ meter is very straightforward. It's easy to identify each equivalent group. The 2/8 has something new. Notice what happened in the second measure of that example. The quarter note actually occupied the space of two beats. Most note groupings will be added together to be the equivalent of a beat. Other note values will be the equivalent of more than one beat.

Let's try an example that utilizes dotted note values. The notes in gray are just there to indicate the subdivisions. The colors for the equations are there to help us keep the measures separate.

This example is a bit trickier. Notice in the first measure, the dotted quarter is the equivalent of a beat and a half. The eighth note at the end of that measure, added to the dotted quarter, makes a two-beat grouping. Likewise, the dotted half in the last measure makes a three-beat group by itself.

If you follow the equations in this example, line by line, you should be able to see how each measure adds up to the equivalent of three quarter notes $\left\{3\left(\frac{1}{4}\right)\right\}$ in every measure, just like the time signature indicates.

There's one other item to take note of. For the dotted rhythms, the fraction we used was based on the subdivision values. The dotted eighths in the first two measures are identified as $\mathbf{3 / 1 6}$. The dotted quarter in the first measure is $\mathbf{3} / \mathbf{8}$, and the dotted half in the last measure is $\mathbf{3 / 4}$. This concept will be significant as we explore the world of compound meter in the next section.

Section 14

Rhythm

Compound Meter

Music theory is one of those subjects that is cumulative. Everything we learn is built on everything we've previously learned. I hope, at this point in our study, we all have a solid foundation of rhythmic values, their relationships, and their organization. As with any construction project, the new material just keeps being delivered and it's up to us to utilize it to strengthen and expand what's already in place. Compound meter is new material. It's an integral part of the structure. It will add a new dimension to our existing foundation. So, let's buckle up our tool belts and get this nailed down.

As was alluded to back on page 61, simple meter is based on the duple subdivisions of $2,4,8$, etc. while compound meter is based on the triple subdivisions of $3,6,12$, etc. As you remember, these triple subdivisions occur in dotted note values.
\mathcal{J} In compound meter, the beat is always a dotted note value. Let's look at one of the most common compound meters to see how all of this is constructed.

If we look at the time signature above, with only an understanding of simple meter, we would think that the eighth note is the beat and there are 6 beats in the measure. That is not the case. Remember, in compound meter the beat will be a dotted rhythmic value. Notice, in the example above, how the eighth notes are bracketed together. Those groups of 3 eighth notes represent 1 beat. 1 beat $=3 / 8$, which is the equivalent of 1 dotted quarter. If the dotted quarter equals 1 beat, how many beats are in each measure?

If there are 6 eighth notes in a measure and $3 / 8$ is the beat, then... $\left\{6\left(\frac{1}{8}\right)\right\} \div 3 / 8=2$
Another way to conceive it is... How many $3 / 8$ s are in $6 / 8$?
\mathcal{J} When looking at a time signature, if the top number is a multiple of 3 , then it will take 3 of the note value indicated with the lower number to equal 1 beat. To determine how many beats will be in one measure, we can take the top number and divide it by 3 . Here's how that breaks down for $\mathbf{6} / \mathbf{8}$.

$$
\begin{array}{ll}
\mathbf{6} \rightarrow(6 \div 3)=2 & \text { beats in the measure } \\
8 \rightarrow\left\{3\left(\frac{1}{8}\right)\right\}=3 / 8 & \text { dotted quarter beat }
\end{array}
$$

Below is an example that will have the dotted half as the beat. Remember, a dotted half will be mathematically identified as $3 / 4$ (3 quarter notes). This meter will have 3 beats with the dotted half as the beat.

Just for clarity, let's look at what's in our toolbox for a moment.
If we have 3 eighth notes, those will be designated as a set and will look like this: $\left\{3\left(\frac{1}{8}\right)\right\}$
That will be calculated as $3 \times \frac{1}{8}$. The equivalent will be $3 / 8$.
Even though they are equivalents, this set is not to be confused with a dotted quarter, which will be designated as a single fraction: 3/8

Here's how that previous meter breaks down.

$$
\begin{array}{lll}
\mathbf{y} \rightarrow(9 \div 3)= & 3 & \text { beats in the measure } \\
\mathbf{4} \rightarrow\left\{3\left(\frac{1}{4}\right)\right\}= & 3 / 4 & \text { dotted half beat }
\end{array}
$$

Here's one more for good measure (pun intended). The notes in gray are just to show the subdivisions.

\sqrt{J} Before we move on, we need to be reminded that any note value has an equal rest value which can occupy the same space. Here's one example. ...a variation of the one immediately above:

Section 15

Rhythm
 Asymmetrical Meter

Have you ever gone to a restaurant, sat down in a chair, and realized that one of the legs wasn't the same length as the others? You found yourself feeling a bit unstable and the chair rocked a bit when you would lean a certain way. Well... that's a bit like asymmetrical meter.
\sqrt{J} In asymmetrical meter, at least one of the beats has a different number of subdivisions than the others. It's really just a combination of simple and compound beats. Some of the beats in the measure have duple subdivisions and some have triple subdivisions.

Let's take a quick look at what is probably the simplest asymmetrical meter, $\boldsymbol{\mathbf { 5 }} / 8$.

As you can see, the first beat of each measure is what we would consider compound time (triple subdivision) and the second beat of every measure is simple time (duple subdivision). This combination is what gives this example of $\boldsymbol{5} / 8$ the label of asymmetrical. It is unbalanced.

Unless the tempo of the piece is very slow, this would be conducted with two beats per measure. Of course, the beats are unequal. Let's break it down.

$$
\begin{array}{ll}
\mathbf{5} \rightarrow\{(3)+(2)\} & = \\
8 \rightarrow\{3(1 / 8)+2(1 / 8)\}= & 2 \text { beats in the measure } \\
8 \text { (dotted quarter beat) }+2 / 8 \text { (quarter beat) }
\end{array}
$$

Here's another example. Let's break it down just in eighth notes.

It should be easy to see that there are 3 beats in each measure. The first two are simple time ($2 / 8$) and the third is compound ($3 / 8$). So... $2+2+3=7$

Of course, not all asymmetrical meters will have the eighth note as the common denominator/note value.

We can see here that there are 4 beats in each measure. The first three are compound time $(3 / 4)$ and the last is simple time $(2 / 4) . \quad 3+3+3+2=11$
\mathcal{J} One of the typical ways to identify an asymmetrical meter is noting that the upper number in the time signature is a prime number greater than 3 . Prime numbers are those that can only be equally divided by 1 and themselves. For our musical purposes here, let's say the typical asymmetrical meter will not have an upper number equally divisible by 2 or 3 . This principle can be applied to the three examples we've seen already. The top numbers for each have been prime numbers $(5,7,11)$ and not divisible by 2 or 3 .

The operative word in the paragraph above is "typical." Sometimes, the typical approach is not the one the composer utilizes (they're tricky that way). On occasion, what appears to be a traditional simple or compound meter gets divided unevenly to create asymmetrical groupings. Here's an example:

You would think that 8 would be divided equally into 4 groups of $2 \ldots$ a nice simple meter. What we see here is an unbalanced, asymmetrical division of the measure. The first two beats are compound ($3 / 8$) and the third is simple $(2 / 8)$: $3+3+2=8$

The same could be done with what we'd consider a typical compound meter. When we see $\mathbf{9} / 8$, we would probably assume it was compound: $\left\{3\left(\frac{1}{8}\right)+3\left(\frac{1}{8}\right)+3\left(\frac{1}{8}\right)\right\}$. But... The eighths in the measure could be grouped differently to create an asymmetrical meter: $2+2+2+3=9$

If you're conducting, or even just tapping your foot, asymmetrical meter will seem a bit unstable, like that restaurant chair. It may give you the impression of taking a walk on uneven ground where your pace is altered because your foot hits the ground a bit earlier or later than you expected. However you'd like to describe what it feels like, asymmetrical meter can be challenging, but fun to listen to and perform.

Section 16

Diatonic Harmony Triad Construction

If you remember our construction metaphor from a couple of sections back, you'll realize in this section that it is doubly appropriate. We are actually going to build vertical harmonic structures. When we say "vertical" we're referring to pitches that sound simultaneously - notes that are arranged on top of each other on the staff. The term "chord" is commonly used to identify these constructions.
\mathcal{J} For our purposes, at this point, a chord can be any vertical harmonic structure that includes three or more notes. Some folks will make the case that a construction of only two notes can be referred to as a chord. As far as this study is concerned, if we only have two notes, we'll simply refer to them as a particular interval. I must add, though, that in certain harmonic contexts, two notes can actually imply and substitute for a specific chord. (We'll save that discussion for another day.)

In this section we are going to deal with a very specific type of chord construction. We will be examining diatonic triads. JJ "Diatonic" means that they will function within a traditional diatonic scale and key center. "Triad" means that they will be constructed with three distinct pitches in intervals of thirds.

Our understanding of intervals will definitely be important here, serving as a foundation for the structures we're getting ready to build. At this point, our set of building blocks only includes three pitches and the intervals of thirds and fifths.

JJ A triad has three distinct pitches. The foundation of the triad is one pitch, referred to as the root. There will be a third above the root, referred to as the third (imagine that!), and another third above the third. This top note will be called the fifth because it is the interval of a fifth above the root. Is that all as clear as mud?

Sometimes words need pictures before they come into focus. Here's what typical triads will look like (except for the labels).

As you can see, they have a very distinctive look. On the staff, the pitches will be on consecutive lines or spaces.

We mentioned above that these will function within a diatonic scale/key. So, let's consider how triads and scales interconnect.

First, we'll establish a diatonic scale. Let's use G major.

Remember our scale degrees with the circumflex on top? Our diatonic triads will also be numbered...
...but with Roman numerals that coincide with the scale degrees. You'll notice that some are upper case and some are lower. Those designations have to do with the quality of the chord. We'll discuss those in detail in the next section.

Let's look at the I chord. It's built on the first scale degree $(\hat{\mathbf{1}})$. The third of the chord is the third scale degree $(\hat{3})$. The fifth is the fifth scale degree ($\hat{5}$). That seems really simple and straightforward. It becomes a bit trickier with chords built on other scale degrees.

```
Let's look at the \
    fifth = \hat{2}
    third = \hat{7}
    root = \hat{5}
```

That doesn't seem as simple. So, is there a way to figure what scale degrees are included in a diatonic triad? Of course... we just need a bit of math magic.

Thinking back, when we were working on intervals, we would figure each interval as a set of two pitches. It will work the same way with triads. They will just have three pitches instead of two. Let's look at three simple triad sets. This should help us formulate an equation. Remember, we are working with diatonic scale degrees and not the chromatic pitch set (CPS), so modulo 7 is the system of numbering we'll use.

If we look at the triads on the staff above we'll see that the set of pitches for the I chord will be $\{\hat{1}, \hat{3}, \hat{5}\}(\bmod 7)$. The set for the ii chord will be $\{\hat{2}, \hat{4}, \hat{6}\}(\bmod 7)$. Likewise \ldots iii $=\{\hat{3}, \hat{5}, \hat{7}\}(\bmod 7) \mathrm{We}$ should be seeing a pattern, right? J Each pitch of the triad is two scale degrees above the previous.
\int For our equation, we will us p as the variable. It will represent the scale degree (pitch) of the root of the triad. Our equation will look like this:

$$
\text { diatonic triad }=\underset{\text { root third }}{\{p,(p+2),(p+4)\}(\bmod 7)}
$$

If we were to build a diatonic triad on the $\hat{6}$, then p would equal 6 . The triad would be labeled as vi.

$$
\begin{aligned}
\mathrm{vi} & =\{6,(6+2),(6+4)\}(\bmod 7) \\
\mathrm{vi} & =\{\hat{6}, \hat{1}, \widehat{3}\}(\bmod 7)
\end{aligned}
$$

Remember, in modulo $7,8 \equiv 1$ and $10 \equiv 3.8$ is congruent with 1 and 10 is congruent with 3 . This equation will work for any diatonic triad in any scale, but... if we think about it... every individual diatonic triad will have the same set of scale degrees no matter what the scale is. Why is that?

Since the scale degree numbers are relative to the specific scale (the tonic pitch is always $\hat{\mathbf{1}}$) and not fixed to a predetermined pitch (like in the CPS), every diatonic triad is relative to the tonic pitch as well.

Think about this... I will always be $\{\hat{1}, \hat{3}, \hat{5}\}(\bmod 7)$. ii will always be $\{\hat{2}, \hat{4}, \hat{6}\}(\bmod 7)$. iii will always be $\{\hat{3}, \hat{5}, \hat{7}\}(\bmod 7)$, and so on. It just makes sense. Right?

Let's touch on one more tidbit before we move into the next phase. Let's refer to this bit as octave displacement. Now that you have the skills to build triads, you should be aware that they don't always show up as a tight group of thirds. Sometimes, the chord members might be displaced by an octave... or two. That chord member is still the same pitch, it will just be sounding in a different octave. There's no need to panic, it's just a matter of knowing what the chord members are supposed to be and locating them in a different space.

Here are some examples in the key of $E b$ major.

Notice in the open spacing above that all the chord members are there, they're just spread out. An Eb is still an $E b$ no matter what octave it's in. The same is true for any pitch. All of these chords are still triads. It's just a bit harder to determine the chord members when they are displaced and not in a close vertical arrangement. File this away. It will be a conversation we'll come back to later on.

Section 17

Diatonic Harmony Chord Quality

In the previous section we saw both upper and lower case Roman numerals used to label our diatonic triads. It was mentioned that the different versions of the numerals were associated with the different qualities of the triads.
\mathcal{J} Every triad has a quality based on the interval relationships within that triad. Those relationships are determined by the distance the third and the fifth are above the root. Here's a graphic table that should put this concept into a concise format.

Quality of the triad	Roman numeral type	Distance from root up to third	Distance from root up to fifth
Major	I	M 3	P 5
Minor	i	m 3	P 5
Diminished	i°	m 3	d 5
Augmented	I^{+}	M 3	A 5

Here's how those would look on the staff if C was the root of the triad.

Of course, each pitch has relationships with the other triad members and not just with the root. We should also consider the distance between the third and the fifth as well as the distance from the fifth up to the root. How about another table to examine the other relationships?

Quality of the triad	Roman numeral type	Distance from root up to third	Distance from third up to fifth	Distance from fifth up to root
Major	I	M 3	m 3	P 4
Minor	i	m 3	M 3	P 4
Diminished	i°	m 3	m 3	A 4
Augmented	I^{+}	M 3	M 3	d 4

Looking at these relationships on our CPS will give us a type of geometric perspective on how triads are constructed.

Here are the four triads that we see on our staff (previous page) graphed on the CPS.

If you are interested in considering other geometric connections between triads, check out The Geometry of Triads page.
\boldsymbol{J} Remember, the distance from \mathbf{C} up to the fifth of the triad would be clockwise on the CPS. This should make us consider the composite interval we get by adding two intervals together. You'd think that adding two 3rds together would give us a 6th, but it gives us a 5 th instead. The reason for that is, the two intervals share a common note between them - they overlap. If you add a M3 (C $\uparrow \mathrm{E}$) and a m 3 (E $\uparrow \mathrm{G}$) you'll get a P5. Make note of the common E between the two thirds. Also, if you add a m3 (C†Eb) and
a M3 (Eb $\uparrow G)$ you'll get a P5. This is the same concept as: $4+3=7$ or $3+4=7$. This should be easily apparent on the CPS.

Let's also note, before we move on, that: $\mathrm{m} 3+\mathrm{m} 3=\mathrm{d} 5$ and $\mathrm{M} 3+\mathrm{M} 3=\mathrm{A} 5$.
The augmented triad has some interesting tricks up its sleeve. Why don't we take a bit of time and explore those secrets.

Looking at the CPS graph of the augmented triad on the previous page you'll see that the triangle it creates equally divides the 12 pitches of the octave from C to C . If we divide the 12 pitches of the octave by the 3 pitches of an augmented triad we get 4. This is the number of half-steps between each pitch of the triad. Remembering our CPS intervals, we know that 4 half-steps equals a M3.

So, in our example we have:

$$
\begin{aligned}
& G \# \uparrow C=d 4 \\
& E \uparrow G \#=M 3 \\
& C \uparrow E=M 3
\end{aligned}
$$

Wait! One of those is not a M3, it's a d4. G\# to C is not a M3. The secret here is that the enharmonic equivalent of $G \#$ is $A b$, and that $A b \uparrow C=M 3$. So, the math and the music can agree.

JJ The other secret in this is... Any augmented triad, spelled enharmonically, can be three different augmented triads. Each pitch of an augmented triad can become the root. Using our $\mathrm{C}^{+}(\mathrm{C}$ augmented triad) as the starting point, we can create the following:

$$
\begin{array}{ll}
C^{+}=\{C, E, G \#\} & \\
E^{+}=\{E, G \#, B \#\} & B \# \text { respelled enharmonically is } C \\
G^{\#+}=\{G \#, B \#, D x\} & D \times \text { is } D \text { double sharp, raising } D 2 \text { half-steps enharmonically to } E \\
& \text { This whole triad could be respelled as }\{A b, C, E\}
\end{array}
$$

Now that we have examined some geometric examples of chord qualities and explored some of the secrets of the augmented triad, it's time to move on and consider the triads in their diatonic context.

Let's bring back the notation example from a few pages back. It is a G major scale with the diatonic triads built on each scale degree.

Now that we're familiar with the Roman numeral designations, we can easily determine the chord quality of each triad, based on its label. JJ We should make a BIG NOTE right here that says, "the diatonic chord qualities will be exactly the same for every major scale." Let's sort these chords into three groups to consider what we have. We might as well throw in another table to give us some graphic representation.

Chord Qualities in All Major Scales	
Chord Quality	Chord Number
Major	I , IV , V
Minor	ii, iii, vi
Diminished	vii $^{\circ}$
Augmented	-

The major keys are all straightforward and consistent, but, if you'll remember, we have three different versions of the minor scale. The possible chord options in a minor key will give us a bit more to consider.

D pure/natural minor

The pure/natural minor, like the major, is fixed and stable. At this point in our study, there are no altered pitches or chords. Unfortunately, for our analysis purposes on down the road, the natural minor is generally not the one we'll see most often. The harmonic minor is probably the most common.

D harmonic minor

Note each of the raised leading tones (in orange) in our example immediately above. dJ This altered $\hat{7}$ allows the harmony to have a major $\boldsymbol{\nabla}$. That's why this version is referred to as the "harmonic." The scale is altered to accommodate the harmonic structure. The major $\boldsymbol{\nabla}$, for all intents and purposes (from

16th-century English law), is the "strongest" chord in the diatonic system of composition. It pushes the harmony toward the tonal center like no other chord in the system. So, the pure minor scale is altered in favor of a strong harmonic function. This is a topic we'll cover in more detail very soon.

There's one other issue to note in our example of the harmonic minor scale - the $\mathbb{I I I}^{+}$chord. In a minor key, the chord built on the $\hat{3}$ is typically a major chord. JI If you'll remember, the III of the minor scale is the I of its relative major key. Making the III into an augmented chord, by including the raised $\hat{7}$, certainly breaks down that relationship. This $\mathbb{I I}^{+}$is included in the example, but isolated in a box to indicate that it is a possibility but not often used.

With the inclusion of the raised $\hat{6}$ and $\hat{7}$, the ascending melodic minor certainly has a variety of colorful chords. As in the previous example, we've isolated the possible but uncommon triads in boxes.

The altered pitches in this version of the minor scale are more commonly seen in melodic lines with less tendency to dictate the harmony. The name of the scale itself indicates this tendency. Don't forget... the descending melodic minor is exactly the same as the pure minor with no altered pitches.

D melodic minor

Even though it will be a bit more of a challenge, let's add a table to indicate the chord qualities that are possible in the minor scales.

Possible Chord Qualities in the Minor Scales

Chord Quality	In the Pure Minor	In the Harmonic Minor	In the Melodic Minor
Major	III, 而, VII	III, V, 证	III , [IV], V , VI, VII
Minor	i, iv, v	i, iv	i, [ii], iv, v
Diminished	iio	iio, vii ${ }^{\circ}$	iio ${ }^{\text {a }}$ [vi°], viii ${ }^{\text {a }}$
Augmented	-	[III ${ }^{+}$]	[III ${ }^{+}$]

Those chords in orange have a raised $\hat{7}$.
Those chords in red have a raised $\hat{6}$.
Chords in brackets indicate a possible but not typical option.

Before we wrap up this section, let's make sure we cover the basic math equations for our chord qualities. Here's a table to remind us of the interval relationships for each, by the numbers.

Chord Quality	Equation $(p=$ pitch of the root $)$
Major	$\{p,(p+4),(p+7)\}(\bmod 12)$
Minor	$\{p,(p+3),(p+7)\}(\bmod 12)$
Diminished	$\{p,(p+3),(p+6)\}(\bmod 12)$
Augmented	$\{p,(p+4),(p+8)\}(\bmod 12)$

Section 18

Diatonic Harmony Seventh Chords

It's time to add another third on top of our triads. Up to this point, we've had a root, a third, and a fifth. When we add another third on top of the fifth we'll get a seventh. According to Spock, logic dictates that a third on top of the fifth will be a seventh above the root. It will look like this (without the labels):

Like our triads, each 7th chord will have a (double) quality based on the intervals above the root. These two chords, noted above, are both mm chords. The first quality in the label will be for the triad and the second quality will be for the 7th. So, these chords have a minor triad with a minor 7th.

As with our triads, let's put together a chart to round up and corral the common diatonic options.

Quality of the 7th chord	Roman numeral type	Distance from R up to 3rd	Distance from R up to 5th	Distance from R up to 7th
Major-Major	I^{7} ($I^{\text {maj7 }}$)	M3	P5	M7
Major-Minor *	I^{7}	M3	P5	m7
Minor-Major	¡7 (${ }^{\text {maj7 }}$)	m3	P5	M7
Minor-Minor	i^{7}	m3	P5	m7
DiminishedMinor **	¡ 07	m3	d5	m7
DiminishedDiminished ***	¡ 07	m3	d5	d7
AugmentedMajor	I^{+7}	M3	A5	M7

The Roman numeral chord designations in parentheses are optional

* The major-minor 7th chord is often referred to as the dominant 7th chord ** The diminished-minor 7th chord is referred to as the half-diminished 7th chord *** The diminished-diminished 7th chord is referred to as the fully-diminished 7th chord (more on all of these later)

If you'll note, our chart above contains common diatonic 7th chords. There are certainly other options for combining triad and 7th qualities, but most of those do not commonly occur in traditional diatonic scale structures. You'll certainly find those alternative 7th chords in jazz harmony. (...but that's another course for another time.)

Before we discuss the secrets of the dominant 7th chord and the diminished 7th chords, let's look at the other third relationships of the chords included in the chart above. ...in yet another chart, perhaps?

Quality of the 7th chord	Distance from R up to 3rd	Distance from 3rd up to 5th	Distance from 5th up 7th	Distance from 7th up to R
MM	M 3	m 3	M 3	m 2
Mm	M 3	m 3	m 3	M 2
mM	m 3	M 3	M 3	m 2
mm	m 3	M 3	m 3	M 2
dm	m 3	m 3	M 3	M 2
dd	m 3	m 3	m 3	A 2
AM	M 3	M 3	m 3	m 2

We're not going to graph every possible 7th chord on the CPS, but it might help us to look at a few of the more common combinations. (If you're interested in more advanced geometric connections click here.)

C Diminished-Diminished

C Augmented-Major

Let's rewind a bit and take a look at the Roman numeral options noted in the chart a couple of pages back. Here's what was included in the chart:

```
I7(Imaj7)
    i7( i maj7)
```

JJ In a strictly diatonic setting, a I^{7} will always be a MM 7th chord. The major I chord will only exist in a major key. That chord will not exist in any of the minor keys. Also, in a major key, the 7 th of the I chord will always be major. The 7 th of the I^{7} will be the $\hat{7}$, which is a M 7 above the tonic pitch, which is the root of the I. From this perspective, the optional I maj7 label will never be necessary.

Labeling the i^{7} in a minor key can be a bit tricky. Suffice it to say, the actual music will determine the kind of label used. Since the minor key has so many variants, there are a few scenarios to consider, but remember... the \mathbf{i} chord will always be m (minor).

- In a passage of music that utilizes the pure minor form, a i^{7} will be a mm chord. The 7 th of the i^{7} will be the $\hat{7}$, which is a m 7 above the tonic pitch, the root of i In this scenario, the optional i maj7 label is incorrect and inappropriate
- In a passage that utilizes the harmonic minor form, the i^{7} would probably be a mm chord In the harmonic minor, the raised $\hat{7}$ is typically used in a harmonic function with a major $\overline{\boldsymbol{V}}$ The raised $\hat{7}$ will probably not be used with a i chord (the same goes for III), but...
IF the raised $\hat{7}$ is used with the \mathbf{i} chord, the optional $\mathbf{i}^{\text {maj7 }}$ should probably be used
- When the melodic minor version is in play, it may be necessary to utilize the optional maj7 label, dependent on what's actually happening in the music at the time.

Of course, you realize there are six other chords in a diatonic scale and we've only been considering the I. J The bottom line is this... if the 7th of any diatonic chord lies within its unaltered diatonic scale, the label only needs the ${ }^{7}$, nothing else. If, in a minor key, the altered scale degrees within the music take a chord's 7th away from what's found in the pure minor, the labeling will need to be adjusted to make it clear how the chord is actually being structured.

We've come to the point where we dive in to the secrets of the diminished seventh chords. To be honest, there's really only one secret, but it definitely holds a bit of magic. First we need to consider the two types of diminished 7 th chords. If you took note of our first table in this section, you'll remember that a dm seventh chord is referred to as a half-diminished 7th. The dd seventh chord is called fully-diminished. It's given that distinction because both qualities, the triad and the 7 th, are diminished. By that reasoning, we should be quick to figure out why the other is half-diminished.

The fully-diminished 7th chord is the one that can produce musical magic. If you remember how our augmented triad equally divided the octave because it is built with all M3s, you should realize that our dd7 does the same thing with m 3 s (see the CPS on the previous page). JJ That, in itself, is kind of fun to consider, but the real trick is being able to build four different dd7 chords with the pitches of one chord. Like the augmented triad, each pitch of the dd7 can be the root of a different dd7 chord. There will be several enharmonic respellings, but the sounding quality of the chord remains the same. Let's stack up a dd7 chord with $\mathrm{C} \#$ as the root and then shift the root through each chord member to see what happens.

Notice in the graph below how the $\mathrm{R}($ root $)$ of a chord is rotated around to become the 7 th of the next chord, leaving the 3rd to become the $\mathbf{R}(r o o t)$ of the next chord.

Also, take note of the enharmonic respellings. Doing this keeps the third relationships intact for each successive rotation of the chord members. To avoid double flats in this situation, the last chord is respelled using sharps.

You're probably wondering, "what's the point?" It's this. Jd As we keep traveling down this road, we'll run into situations where there is a need to transition (modulate) from one key center to others. The dd7 chord typically functions as a viio7, which has a very strong tendency to progress (resolve) to I (or \mathbf{i}). Respelling the viio ${ }^{7}$ allows it to function in two different key centers and serve as a pivot point from one to the next. It will begin in one key, be respelled, and resolve to $\mathrm{I}(\mathrm{or} \mathbf{i})$ in the new $k e y$.

So, we've just gotten a glimpse of the future. File this away and when our travels bring us to encounter these situations, we will be prepared with a bit of magic to see us through.

Before we forget, let's talk about the Mm7. As we noted in the the chart three pages back, this chord is generally referred to as the dominant 7 th chord. This is the chord quality of the $\bar{\nabla}^{7}$ — the 7 th chord built on the dominant scale degree (remember our discussion of the names of the scale degrees?). This Mm quality holds an extremely prominent role in the functions of traditional diatonic harmony. The dominant 7 th chord contains the leading tone, which is, what we call, an active tone. In a diatonic context, the leading tone $(\hat{\mathbf{7}})$ actively leads or pushes our sense of resolution toward the tonic pitch $(\hat{\mathbf{1}})$.

This chord also contains a tritone, between the 3rd of the chord and the 7th of the chord. This active interval, begs for resolution. The 3rd (which is the leading tone) wants to resolve to $\hat{1}$ and the 7 th wants to resolve down to the $\hat{3} . \nabla^{7}$ really wants to resolve to I. This strong tendency makes the dominant 7 th chord the most active and vital chord in diatonic harmony. We'll really dive in to all of this when we get to Harmonic Progression.

We should take a quick peek at the typical diatonic 7 th chords on the staff.

B melodic minor (ascending)

As usual, please note that these are just examples and that these chord qualities will be consistent no matter what key is being utilized.

Before we hit the finish line on this section we need to consider this last set of 7th chords for the melodic minor. Since the scale can contain both the raised $\hat{6}$ and $\hat{7}$, the harmony could go in several directions, giving us multiple options for these 7 th chords. What you see above are what we should consider "typical."

But...
If $\hat{6}$ is raised:
ii ${ }^{7}$ could be a mm
iv ${ }^{7}$ could be $\mathrm{Mm}\left(\mathrm{IV}^{7}\right)$ (this would make it a dominant 7 th chord which would have a tendency to lead us to another key)

If $\hat{7}$ is raised:
i^{7} could be a mM ($\mathrm{i}^{\mathrm{maj} 7}$)
III ${ }^{7}$ could be a AM (III+7)

There it is!
Let's move on.

Section 19

Diatonic Harmony Inversions and Figured Bass

What if we have a chord in which the root is not the lowest note? What if the 3rd is the lowest note... or the 5th? Is it the same chord? Does it function the same way? Is there a way to label the different versions?

IJ If a chord has one of its members, other than the root, as the lowest-sounding note, that chord is considered to be inverted. In most respects, it is the same chord with the same Roman numeral designation, but the function of some particular chords will change a bit based on the musical context.

To answer our last question... Yes. There is a way to label the different versions. We refer to this system as figured bass. It is a kind of musical shorthand that was used in the 17 th and 18 th centuries. This era, the Baroque and early Classic periods, utilized a practice referred to as continuo. This was a type of basic accompaniment that included an instrument, such as a cello, playing a bass line, and a keyboard instrument, such as a harpsichord, filling in the harmony. (Should someone make a joke here about adding a drum set and making it a jazz trio?!)

This shorthand musical notation included a bass note/line on the staff with numbers underneath that indicated the harmony to be used. It would look something like this:

\boldsymbol{J} The numbers you see under the staff indicate intervals that should be played above the given bass note. It is understood that the notes without numbers are in root position and that there would be a 3rd and a 5th above the bass note (the root of the chord).
\sqrt{J} We need to take note at this point. When we use the phrase bass note, we are referring to the lowestsounding pitch. Take this little scrap of information and file it away. It will come in handy later on.

When someone plays from this kind of score, it becomes realized. Below is a realized version of the figured bass score above.

Notice...

- the first and last chords have no numbers. They are in root position.
- the third and sixth chords only have a 6, but there's a 3rd above the bass as well. The 3rd is implied.
- the fourth chord is actually in root position. The 7 is there to indicate that it is a 7 th chord.
- the fifth and seventh chords are 7th chords as well. The 6th above the bass is implied.

It's time to throw a chart on the page to bring all of this into better focus.

Inversions and Figured Bass

Chord member in the bass	\mathbf{R} (triad)	3rd (triad)	5th (triad)	\mathbf{R} (7th chord)	3rd (7th chord)	5th (7th chord)	7th (7th chord)
Complete figured bass	5	6	6	7	6	6	6
Figured bass typically used	3	(nothing)	6	5	5	4	4
How to find the root	lowest- sounding note	6th above the bass	4th above the bass	lowest- sounding note	6th above the bass	4th above the bass	2nd above the bass

Why don't we see how these look on the staff!?

You'll notice in the example immediately above, each type of inversion has a designation. If the 3rd is the lowest-sounding note, it's considered first inversion. ...5th, second inversion. ...7th, third inversion.

Also, we've added Roman numerals to the mix. Although we've already discussed the use of these, we haven't really considered where they came from. Historically, composers came first and the theorists followed. Composers would write the music they believed sounded appropriate, according to a system they created or adhered to. The theorists would study, dissect, and analyze the music being written and document what they believed to be the practices being utilized.

Jean-Philippe Rameau, a French composer and theorist of the 18th century, is traditionally credited with the system of labeling chords with Roman numerals based on a chord's root. What we use today is a combination of Roman numerals, indicating what root note the chord is built from, and the figured bass numbers, indicating the chord's inversion.

Here's a quick note: A chord can be opened up with its members spread out over multiple octaves.

Notice in the previous example:
The I should have a 3rd and a 5th above the bass. The 5th is there, but the 3rd is an 8va higher. The I_{5}^{6} has the 6 th directly above the bass, but the 5 th is an 8 va higher.

These octave displacements don't present any problems with the analysis, except... we have to be able to recognized the chord members in whatever octave they appear. The given example makes it simple by color-coding the chord members. Unfortunately, when we analyze a piece of music, that music won't be that kind of colorful.

Since Rameau's writings on music theory, we have accepted the fact that a chord, even if inverted, is still the same fundamental chord. Our use of Roman numerals verifies this concept, with figured bass as added footnotes. This answers another one of the questions posed at the beginning of this section.

One question remains from our opening paragraph. Do inverted chords function the same as they do in root position? The (less than definitive) answer is... Some do. Some don't.

There is a lot to consider when dealing with chord function. Probably, the most significant consideration is the context in which the chord is found. Where does it fall in the key? What comes before it? What comes after it?

There are two other considerations, in terms of chord function. What inversion is it in? Does it contain active tones (a topic for another day)?

There's one chord that can definitely take on other specific functions. The I in second inversion $\left(I_{4}^{6}\right)$ can be considered a pre-dominant chord. This simply means that it can, and often does, precede the dominant ($\overline{\boldsymbol{V}}$). It can also be used as a substitute dominant, taking the spot in a chord progression where the dominant would usually reside.

Grappling with questions about chord function is certainly prompting us to move on to the next section and look for additional clarity. Let's do it!

Section 20

Harmonic Progression Strong Root Movement

What is harmonic progression? It's simply the process of going from one harmony to another... from one chord to the next. In this process there are two basic types of movement, strong and weak. These are not synonymous with "good" and "bad" or "pleasing" and "displeasing." In tonal music, strong is generally the norm, but weak is also used in certain instances.

When referring to harmonic progressions, Roman numerals for diatonic chords are generally used (I, IV, ii, \boldsymbol{Z}^{7}, vi, etc.). JJ The distance between two chords is measured from the root of one chord to the root of the next chord, regardless of the inversions of the chords. IJ The note in the bass voice (lowest-sounding pitch) does not determine the distance between the roots of the chords.

For example:
The distance between I and $\mathbb{I V}$ is down a 5 th (up a 4th).
The distance between I and $\mathbb{I V}_{6}$ is down a 5 th (up a 4th).
The distance between IV and ii is down a 3rd (up a 6th).
The distance between IV_{6} and ii_{4}^{6} is down a 3 rd (up a 6th).

Once again, the chord members have been color-coded to make it quicker and easier to see the root movements of these chords. Let's take a short detour and talk about recognizing chords when they are not color-coded, in root position, or in close position. Here's a quick, two-step process:

1. Find all the pitches included (ignore any doubled pitches)
2. Arrange them in 3rds

Look at two of the chords in the example above, the IV_{6} and the ii_{4}^{6}.
The pitches included in the \mathbb{Z}_{6}, from the bottom up, are: $C, A b, E b$
Arranged in 3rds we would have: $A b, C, E b$
$A b$ would be the root. This is an $A b$ major triad.
The pitches included in the $\mathrm{ii}_{4}{ }_{4}$, from the bottom up, are: $\mathrm{C}, \mathrm{F}, \mathrm{Ab}$
Arranged in 3rds we would have: F, Ab, C
F would be the root. This is an F minor triad.
Many rules and regulations have been formulated over the years to govern what is considered appropriate or strong harmonic movement. These rules can be summed up, however, in the simple chart at the top of the next page.

Reminder: These movements are from the root of one chord to the root of the next, regardless of inversion.
$\sqrt{2}$ STRONG ROOT MOVEMENT J

\downarrow 5th	\downarrow 3rd	\uparrow 2nd
down a 5th (up a 4th)	down a 3rd (up a 6th)	up a 2nd (down a 7th)
I \rightarrow Any I can go to any chord	Two Exceptions \leftrightarrow	IV \rightarrow I IV can go to I

Here are examples of strong root movement progressions:
Down a 5th

$$
\text { Examples: } \quad \mathrm{I} \rightarrow \mathrm{IV} \quad \mathrm{ii} \rightarrow \mathbf{V} \quad \mathrm{iii} \rightarrow \mathrm{vi}
$$

Down a 3rd

$$
\text { Examples: } \mathrm{I} \rightarrow \mathrm{vi} \quad \text { vi } \rightarrow \text { IV } \quad \text { IV } \rightarrow \mathrm{ii}
$$

Up a 2nd

Examples: $\mathrm{I} \rightarrow \mathrm{ii} \quad$ iii \rightarrow IV \quad IV \rightarrow V
From I to any other chord

From IV to I

Strong root movement progressions will be what we focus on as we consider tonal music from the Common Practice Period (roughly 1650 to the early 20th century). But... as mentioned, weak root movement progressions are used in certain instances (at the composer's discretion). For clarity, we should note that these are the exact opposites of strong movements: Up a 5th Up a 3rd Down a 2nd

What if we add a little math to this? Maybe it will be just the crutch we need to help us move along!?
Since we are dealing with diatonic harmony we are working in Modulo 7. Remember the mod 7 "clock" from Section 1? Here it is again to help us visualize our harmonic root movements. Remember... upward movement goes clockwise and downward goes counter-clockwise.

These examples all have the tonic pitch (the root of the I chord) as the starting point. As always, these calculations can begin from any pitch that serves as the root of a diatonic chord.

For some quick equations, let \mathbf{r} be the variable for the pitch that serves as the root of the chord.

$$
\begin{aligned}
& \downarrow 5 \text { th }=(r-4)(\bmod 7) \\
& \downarrow 3 \mathrm{rd}=(r-2)(\bmod 7) \\
& \uparrow 2 n d=(r+1)(\bmod 7)
\end{aligned}
$$

Let's say we have a iii chord. What are the strong root movements from that chord?

$$
\begin{aligned}
& \text { If } r=\hat{3} \text { then } \downarrow 5 \text { th }=(3-4)(\bmod 7) \\
& \downarrow 5 \text { th from } \hat{3}=\hat{6} \\
& \text { If } r=\hat{3} \text { then } \downarrow 3 \text { rd }=(3-2)(\bmod 7) \\
& \downarrow 3 \text { rd from } \hat{3}=\hat{1} \\
& \text { If } r=\hat{3} \text { then } \uparrow 2 n d=(3+1)(\bmod 7) \\
& \uparrow 2 \text { nd from } \hat{3}=\hat{4}
\end{aligned}
$$

Here's a different graphic form that might help us visualize these figures (note the correlation of colors from the equations above).

(To see an animation of all the options, click here.)
Before we put this to bed, let's look at a few actual harmonic progressions to see how they fit together.
Here's one that only uses $\downarrow 5$ th movements.

$$
\begin{array}{llllllll}
\mathrm{I} & \mathrm{IV}_{4}^{6} & \mathrm{vii}_{6} & \mathrm{iii} & \mathrm{vi}_{4}^{6} & \mathrm{ii}_{6} & \mathrm{Z}_{2}^{4} & \mathrm{I}_{6}
\end{array}
$$

Just as a note... progressions can utilize \downarrow 5th movements exclusively and be effective. Using \downarrow 3rd or $\uparrow 2$ nd movements exclusively is really not very effective. It's better to mix these with the other options. Here are some examples.

Section 21

Harmonic Progression Cadences

Did it occur to you that we didn't talk about the IV to I progression mentioned in the Strong Root Movement chart? The reason is, we were saving it for this section, when we talk about cadences.
\sqrt{J} In traditional tonal music, the linear movement is often divided into phrases. These are typically a few measures in length and end with some sort of pause or, as I like to call it, a point of repose. The most traditional, balanced arrangement is two phrases, each usually four or eight measures in length. The first phrase is referred to as the antecedent phrase and the second as the consequent phrase. Together, they form what is called a period. These two phrases (the period) are often thought of like a combination of question and answer.

Here's an example of a well-balanced musical period:

If you are utilizing the e-book format, you should be able to click on the icon at the end of the example and listen to this music. If you do, you'll be able to hear how each phrase ends with a pause, a point of repose. As you would expect, these two cadences have labels.
\sqrt{J} The cadence at the end of the first (antecedent) phrase is what we call a Half Cadence. This type of cadence ends with some sort of \bar{Z} chord. It usually occurs halfway through the period, at the end of the antecedent phrase.
\boldsymbol{J} The cadence at the end of the consequent phrase is called an authentic cadence. It is made up of a $\overline{\mathrm{V}}$ to I progression. This type of progression usually occurs as a final cadence, at the end of a period or the end of the whole piece.

Of course, there are more than just two. On the following page you'll see an outline of the various types of cadences, with an explanation for each.

Authentic Cadence

V or viio going to I
Perfect Authentic Cadence (PAC)
V going to I
Both $\overline{\mathrm{V}}$ and I are in root position
The tonic pitch will be in the uppermost voice of the I chord
Imperfect \boldsymbol{A} uthentic Cadence (IAC)
V or viio going to I
Any inversion of either chord
Any pitch of the I chord in the uppermost voice
Half Cadence (HC)
Any progression ending with a \mathbf{V} chord
Usually seen at the end of the antecedent phrase
Plagal Cadence ($P C$)
IV to I
Sometimes referred to as the "amen" cadence
Deceptive Cadence (DC)
Usually $\overline{\mathrm{V}}$ going to vi
Let's take the musical example from the previous page and re-compose it to show each of the cadences noted above. Since the music already gives us a good example of a Half Cadence (HC), we'll not redo that one. Also, we'll just look at the last two measures of the consequent phrase.

Our musical example already ends with a Perfect Authentic Cadence... \boldsymbol{V} to I, both in root position with
 the tonic pitch as the highest-sounding note. So, there's no need for re-composition. Please note the use of the label (PAC).

Let's change the \mathbf{Z} to a viio. Please note that it is still a PAC.

Here are a couple of examples of Imperfect Authentic Cadences (IAC).

I hope you noticed that both the $\overline{\underline{V}}$ and vii${ }^{\circ}$ were inverted and the I had the $3 r d$ as the top note. One or both of those will make these cadences IAC.

The Plagal cadence, thought of as the "amen" cadence, is often used as a way of extending the phrase and delaying the final chord just a bit. I assume you realize the cadence is the IV to I movement and not the \boldsymbol{V} to \bar{V} in this example.

The last cadence in our set gets its name from the fact that it takes the harmony to an unanticipated resting place. The Deceptive Cadence takes the $\overline{\mathbf{V}}$ to vi instead of the expected I .

Just a note: The Deceptive Cadence is not usually the final cadence of a piece of music. It is often used to extend the phrase, add another phrase, or to lead the music off in a different direction.

Of course, each of these cadences is perfectly suited for minor keys as well as the major. The example below has been redone in D minor.

Section 22

Harmonic Progression Voice-Leading

It's time to turn our eyes away from the vertical and gaze upon the horizontal. We're going to take a little sideline tour away from harmony and spend a bit of time considering melody. Also, a bit of a break from analysis might be in order as we consider the other side of the coin - composition.

Within the realm of harmony, we've touched upon the vertical construction of intervals, triads, and 7th chords. We've even explored horizontal harmonic movement. ...how one chord moves to the next. Now, we're going to pull out the pencil and staff paper and begin putting single notes one after the other in logical, effective, and musical sequences.

The collection of concepts of melodic construction is what we refer to as voice-leading.how the melody of a single line (voice) moves from one note to the next. As always, remember that we are dealing with the principals and parameters of music from the common practice period, not the contemporary tunes of Taylor Swift.

Let me first list the parameters that will govern our melodic construction, then we'll add some illustrations and deeper explanations following the list.
\mathcal{J} Strong, effective melodic movement (voice-leading) will typically follow these basic principals.

1. Move in step-wise motion or outline the underlying harmony
2. Avoid large skips (7ths and intervals larger than an octave)
3. When approaching a pitch by leap, leave the pitch by step in the opposite direction
4. Avoid augmented interval
5. When writing diminished intervals, resolve the movement by step in the opposite direction
6. Certain tones, referred to as "active" or "tendency" tones, usually resolve in specific ways

- leading tones tend to resolve UP to the tonic pitch
- 7ths of chords tend to resolve DOWN by step
- accidentals tend to resolve (continue) in the direction they are altered
- flats (lowered pitches) tend to resolve DOWN by step
- sharps (raised pitches) tend to resolve UP by step

Let's add some illustrations to give these guidelines musical context. The first concept in the list simply gives us the basics of melodic writing - outlining the harmony or stepping through the scale.

$\int \mathcal{J}$ We should make a quick note right here. Even though we are exploring melodic construction, we should always be aware of the underlying harmonic structure and try to avoid melodic passages that do not fit within the harmony. As we move forward, we'll certainly expand our parameters, but for now, the boundaries are relatively snug.

The second point from our list above indicates that we should avoid large leaps in the melodic line. Having been a singer and choir director throughout my career, I've always been aware of difficult vocal passages. It seems that the larger the interval (other than an octave), the more difficult it is to land on the right note. One of the practices that I have incorporated into my melodic writing is to sing what I have
written. If the line is difficult to sing, I usually assume the voice-leading could be improved. All of this being said, let's avoid large leaps as we construct our lovely, unforgettable tunes. Here's an example of large leaps hampering good voice-leading.

There's another issue with this melody above. Following the large leaps, the melodic line keeps going in the same direction as the leap. Following any leap, it is much better to step back in the opposite direction.

In a minor key that utilizes the raised $\hat{7}$, there is the possibility of running into a couple of augmented melodic intervals. From $\hat{4}$ up to $\hat{7}$ is an augmented 4th. (Note: In a major key it's also an augmented 4th.) From $\hat{6}$ up to $\hat{7}$ is an augmented $2 n d$.

The issue with the augmented 4 th $(\hat{4}$ up to $\hat{7})$ is that when those two pitches are used together they are typically "active tones" that need to resolve in a specific manner, which is contrary to good voice-leading. In the example below, when the melody leaps from $\hat{4}$ up to $\hat{7}$, the best voice-leading would have it step back down in the opposite direction, but the $\hat{7}$ is the leading tone that really "wants" to continue on up to the tonic. If the melody were to go from $\hat{7}$ down to $\hat{4}$, the $\hat{4}$ would sound like the 7 th of the \mathbb{V}^{7} which tends to resolve down to $\widehat{3}$ instead of stepping back up in the opposite direction of the leap. (These tendencies are much more apparent when listening to the music, compared to just looking at the notes on the staff.)

We should remember that augmented intervals are deceiving. In the example above, the $A b$ to the B 月 certainly looks like a $2 n d$, but will sound like a minor 3 rd . This will be the case with every augmented interval. An augmented 5 th will sound like a minor 6th. An augmented 3 rd will sound like a perfect 4 th, and so on. Avoiding these points of deception in our melodic writing will be a positive move.

Oddly, when augmented intervals are inverted they become diminished and have an acceptable resolution. The augmented 4 th in the example above will become a diminished 5 th when inverted. The example on the top of the next page demonstrates the resolution for the diminished fifth.

The acceptable resolution for a diminished melodic interval is to step back in the opposite direction.

Here's one more example with a harmony other than the $\boldsymbol{Z} 7$.

Let's wrap up this section by talking about active tones. Those are the pitches, in a tonal setting, that have a tendency to resolve is specific ways. We've already touched on leading tones and 7ths of chords, but let's reemphasize their resolutions. Leading tones have a strong tendency to resolve up to the tonic pitch. Their very name tells us they have a directional focus. They "lead" us to tonic.

Likewise, the 7 ths of chords tend to resolve down by step. One example is the \boldsymbol{Z}^{7}. The 7 th in that chord, which is the $\hat{4}$, tends to resolve down to $\hat{3}$. (More often than not, that's the 3 rd of the I .)

Accidentals are the last group of our active tones. Any pitch that is altered by an accidental will tend to resolve in the direction it has been altered. A pitch that is sharped (or raised by a natural) will tend to continue on up. Likewise, a pitch that is lowered by a flat (or a natural) will tend to continue on down. Here's one example that includes each of the active tones. ($\mathbf{1}=\mathrm{accidental} ; \mathbf{2}=$ leading tone; $\mathbf{3}=7$ th)

As I mentioned, most of these melodic movements, tendencies, and resolutions can be better understood through listening. Take the opportunity to play each of these examples, with the harmony indicated, and make note of how they sound. If you are using the e-book version, you should be able to access the audio examples provided for each illustration.

I need to add one more quick note before we move on. Currently in our study, the only accidentals we will run into will be the raised $\hat{\boldsymbol{\sigma}}$ and $\hat{7}$ in minor. Other types of accidentals won't show up until later.

The next section takes us a little further into the wonderful and fascinating world of composition. We'll be looking at how to combine multiple melodic lines and how they should interact with each other.

Good times!

Section 23

Harmonic Progression Part-Writing

In this section, we'll examine how simultaneous melodic lines should behave with each other. ...how multiple linear voices interact within a vertical structure. We are going to add new tools to our compositional toolbox that will enhance our ability to write music that is effective both horizontally and vertically.

Traditionally, in the study of music theory, the principals of part-writing have been presented in four-part chorale style. In this structure, the parts are referred to in the familiar terms of Soprano, Alto, Tenor, and Bass (SATB). These principals of chorale construction, however, are easily translated to virtually every medium of composition. A note should be made here... Although we are using the labels associated with singers, we will not limit our considerations to vocal performance. Any and all instruments can be utilized in our four-part arrangement.

Again, let me note that we are currently working within the framework of the common practice period. We are also using, as our starting point, the traditional four-part chorale construction. As we move forward, our parameters will expand and adapt, moving past the common practice period and beyond four parts into other compositional combinations.
\sqrt{J} Because so much attention has been paid to four-part textures, two widely-accepted labels are used. They are:

- CLOSE structure: an octave or less between the Soprano and Tenor
- OPEN structure: more than an octave between the Soprano and Tenor

We've encountered these concepts previously in our study, but here we have more definitive descriptions, ones that relate to the chorale-type construction we are currently considering.

When writing in this format, there are a few guidelines that will be necessary for smooth and strong interaction between the parts. As in the previous section, let's first make note of these and then expand them afterwards with illustrations.

1. Nothing should be written above the Soprano or below the Bass
2. The Alto and Tenor parts can cross, but only briefly, and only for reasons of strong voiceleading
3. Avoid more than an octave between adjacent upper voices

- No more than an octave between the Soprano and Alto
- No more than an octave between the Alto and Tenor
- More than an octave between the Tenor and Bass is acceptable

4. Avoid parallel 5 ths and $8 v e s$
5. Avoid direct 5 ths and $8 v e s$
6. The strongest movement between voices is contrary motion (going in the opposite direction)
7. An effective movement between voices is oblique motion (one stationary and one moving)
8. Similar motion is acceptable (if avoiding parallel and direct 5 ths and $8 v e s$)

Often it is necessary to double or omit certain chord members to maintain strong voice-leading. When doing so, a few guidelines should be considered.

1. When needed, try to double the root or $3 r d$ (double the 5 th only if strong voice-leading prohibits doubling the root or 3 rd)
2. Do not double active (tendency) tones
3. Omit the 5 th if necessary

- Omitting the root changes the chord entirely
- Omitting the $3 r d$ or 7 th alters the quality of the chord

Obviously, if we were writing a piece for band or orchestra, some of these chorale-oriented guidelines would not be appropriate. So, keeping our four-part construction in mind, let's talk about the implications of these parameters.

With only four voices being heard, the top voice (soprano) is typically given the main melodic material. For this hymn-like format, we have all been conditioned to hear the uppermost line as the melody. That being the case, if the alto line moves above the soprano, the alto notes are automatically interpreted as the melody. To maintain the integrity of the melodic content in the soprano, nothing should be written above it.

The same type of situation applies to the bass. That line is structural because it serves as the foundation for the harmony above it. If you build a house, the foundation must be strong and stable in order to support the construction resting on it. If the tenor voice moves below the bass, the bass loses its status as the lowest-sounding pitch and the foundation becomes unstable. To maintain the integrity and stability of the foundation in the bass, nothing should be written below it.

Unlike the outer voices (soprano as the highest, bass as the lowest) the alto and tenor voices can easily be crossed without changing the basic structure of the harmony. Of course, the harmonic structure is not the only issue to consider. The integrity and independence of these two lines needs to be guarded. If the alto and tenor cross, it should not be for long, and it should only happen to maintain strong voice-leading for one or both of them.

In chorale construction, the harmony sort of exists as a unit or unified object. When one of the upper voices (SAT) becomes isolated from the other two, this unified arrangement is in jeopardy. It is for that reason that we should not write more than an octave between the soprano and alto, or between the alto and tenor.

So, you're asking... Why is it different with the bass? If you remember, when we first dealt with figured bass, we talked about the continuo. That practice of having the bass line played by one instrument and the harmony played by a keyboard instrument has, in many respects, carried over into our practice of partwriting. Even though the bass is part of the harmony, it sort of stands alone as the foundation for the other parts. So, if it is separated by more than an octave from the tenor part, it is acceptable. There is also an acoustical consideration that could be discussed, if we had the time and space. We'll save that for another time. ...or class. ...or professor.

If you take a look back through music history, you'll discover that the practice of parallel movement changed through the eras. In the common practice period, parallel and direct 5ths and 8ves were not acceptable harmonic movements. Skip ahead a few years to Debussy and discover that his technique of planing (extended parallel movement of whole chords) was well-accepted and influential. Since we are currently working through that earlier period, let's take a look at what parallel movements we need to avoid.

The musical selection below gives us several examples to consider.

Parallel 5ths happen when two voices, a P5 apart, move directly to another P5. If either of the two intervals is not a P5, the movement is not considered parallel, therefore, it is acceptable.

It's the same situation with parallel octaves. If either of the two intervals is not a P8, then no parallel movement should be noted.

Direct 5 ths is when two voices move in the same direction to form a P5. It's the same situation with direct octaves. In the strictest interpretation, these should be avoided between any two of the four voices. From a more relaxed perspective, these direct intervals are only a concern when they occur between the two outer voices (soprano and bass).

In addition to parallel movement, there are three other types of movement. Each of these is more effective than any direct or parallel movement. Let's use the same musical selection to consider these.

The guidelines for doubling and omitting chord members are pretty straightforward. Graphics to illustrate those are probably not necessary. Dealing with those will best be considered in a worksheet/homework format.

Let's put a period on this section and move on to those notes that do not fit the harmony (NonHarmonic Tones) in the next section.

Section 24

Harmonic Progression Non-Harmonic Tones

We have been considering how pitches are used to build horizontal melodic lines and vertical harmonies, and how they move in succession. In this section we'll be looking at pitches that don't belong to the chords. ...pitches that are not heard as members of the prevailing harmony. These are what we call nonharmonic tones (NHT).

J The common non-harmonic tones are usually identified as belonging to one of eight categories. Each is categorized and labeled based on two criteria:

- How it is approached (from the pitch that precedes it)
- How it is resolved (to the pitch that follows it)

We have now been given another opportunity to create our favorite organizational structure, a table. In the far left column you'll see the name of the non-harmonic tone with its label in parentheses. The columns to the right of that will indicate how that tone is approached and how it is resolved.

NON-HARMONIC TONE	APPROACHED BY	RESOLVED BY
Passing Tone (PT)	step	step in the same direction
Neighbor Tone (NT)	step	step in the opposite direction
Escape Tone (ET)	step	leap (usually in the opposite direction)
Anticipation (Ant)	step	step down
Appoggiatura (Ap)	leap	
Suspension (Sus)	same pitch	step up
Retardation (Ret)	same pitch	same pitch
Pedal Point	same pitch	step
Neighbor Group (NG)	leap a 3rd in the opposite direction then step	

A Neighbor Group is a variation/extension of the simple Neighbor Tone. The NG is a lower neighbor (below the chord tone) and an upper neighbor (above the chord tone) in combination. The order of the upper and lower neighbors can go either direction (below then above or above then below).

As always, it is easier to grasp these concepts when we can see them in a musical context. Immediately below are examples of PT, NT, and NG.

In the top voice (soprano) of the first measure we see a \mathbf{D} that moves step-wise between the E of the I to the \mathbf{C} of the \mathbf{I}. The \mathbf{D} does not belong to the harmony (\mathbf{I}). Since it is approached by a step and resolved by a step in the same direction it is considered a PT.

In the second measure the A in the soprano steps down from the B of the $\overline{\boldsymbol{V}}$, then steps back up to the \mathbf{B} of the $\boldsymbol{\nabla}$. In the alto voice, the last note in that same measure is an \mathbf{E} that steps up from the \mathbf{D} then steps back down to the \mathbf{D} of the $\mathbf{\nabla}$ on the downbeat of the third measure. Both of those step away from the chord tone, then step back to the same chord tone. That is the typical approach and resolution of a NT.

In the third measure we see a PT in the alto that passes between the 5th of the $\overline{\mathbf{V}}$ to the 7 th of the $\overline{\mathbf{V}}$. The soprano of that same measure shows us an example of a NG. The chord tone is a \mathbf{B}, the 3 rd of the \boldsymbol{V}. The NG gives us the A below the B, then leaps up a 3rd to C, a step above the B, then resolves back down to the B .

The excerpt below gives us examples of Ap, ET, and Ant.

It should be noted at this point, sometimes the NHTs occur between the chords and sometimes they show up with the chord. When the NHT is between the chords it is considered unaccented. When it occurs at the same time as the chord, it is referred to as accented. In the excerpt above, the appoggiatura (Ap) is accented (on the third beat with the chord) while the escape tone (ET) and the anticipation (Ant) are unaccented, between the chords.
The Ap and ET are basically opposites. The Ap is a leap then step. The ET is a step then leap. I would speculate that the ET is usually going to be a step up, followed by a leap down. Likewise, the Ap will usually be found as a leap up then step down. Even if those movements are the norm, the opposite arrangements might be found.
The musical example below shows us the three NHTs that have a stationery pitch as part of the mix.

If you'll notice, each of these three NHTs have a pitch that hangs on while the harmony changes. The suspension (Sus) and retardation (Ret) have a pitch which doesn't move when the chord changes. That pitch stays in place and resolves after the new harmony is heard.

In the first measure the alto has a \mathbf{G}, the 7 th of the \mathbb{V}^{7}, which does not change when the harmony progresses to the I. It is sustained until the beat after the I chord is heard. It then resolves down from the G to the $F \#$, which is the 3 rd of the I. That I is in second inversion. You'll notice the figured bass, on the third beat, indicates there is a 7th and a 4th above the bass. The 7th above the bass, which is the Sus, then resolves down to a 6th, giving us the typical ${ }_{4}^{6}$ inversion.

In the second measure, we see the Ret. It has the same approach as the Sus but instead of resolving down by step, it resolves up by step. The figured bass tells us that the 7th above the bass resolves up to an 8va.

The last NHT to look at is the pedal point (Ped). Simply put, the Ped is a pitch that stays the same as the harmony changes. This NHT is typically found in the bass, as the lowest-sounding note, with the harmony changing above it. On occasion, though, it can be found as an internal component with the harmony changing above and below.

Section 25

Closely-Related Keys

When we talk about keys we are basically talking about groups or sets of pitches. If you'll remember from Section 10, we said, "A key is basically the collection of notes included in the scale." In this section we're going to consider how those collections/sets overlap and relate to each other.

Pitches in any given key are identified by their scale degrees. In a traditional diatonic setting we label these from $\hat{1}$ to $\hat{7}$, with a circumflex above each number. As you remember, each and every pitch also has a number from our CPS (Chromatic Pitch Set). For this section, the CPS numbers are very important. We'll focus on those.

Let's look at a couple of scales with their CPS numbers.

Let's take the CPS numbers (on the top of each staff) and show them as a set. If we designate CM as C major and GM as G major, the sets would look like this:

$$
C M=\{0,2,4,5,7,9,11\} \quad G M=\{7,9,11,0,2,4,6\}
$$

You'll notice that CM is in numeric order, since the scale itself starts on 0 . Let's put GM in numeric order and compare it with CM.

$$
\begin{aligned}
\mathrm{CM} & =\{0,2,4,5,7,9,11\} \\
\mathrm{GM} & =\{0,2,4,6,7,9,11\}
\end{aligned}
$$

You'll notice that there is only one pitch different. In CM there's a 5 and in GM there's a 6. If you remember how a Venn diagram works, here's what these two sets would look like if they were overlapping.

Here's the D major scale:

If $\mathrm{DM}=\mathrm{D}$ major, the set would be: $\mathrm{DM}=\{2,4,6,7,9,11,1\}$
Let's put them in numeric order and compare GM to DM.

$$
\begin{aligned}
& \mathrm{GM}=\{0,2,4,6,7,9,11\} \\
& \mathrm{DM}=\{1,2,4,6,7,9,11\}
\end{aligned}
$$

Again, let's see what a Venn diagram would look like for these two key sets.

\boldsymbol{J} I'm sure you've figured it out. Closely-related keys are ones that have only one pitch
different. They have 6 of their 7 pitches in common.
The Venn diagram for CM and GM indicates that the intersection of the two keys is the following set: $\{0,2,4,7,9,11\}$. The intersection of GM and DM is: $\{2,4,6,7,9,11\}$. In mathematical shorthand these would be:

$$
\mathrm{CM} \cap \mathrm{GM}=\{0,2,4,7,9,11\} \quad G M \cap \mathrm{DM}=\{2,4,6,7,9,11\}
$$

It seems like we've pretty well covered this concept... except... What about minor keys? We should probably throw a few of those into the mix to see what happens.

Let's take C major and compare it to its relative minor. Here's A pure minor.

Why don't we give A minor the designation of am !? Here are their two pitch sets:

$$
C M=\{0,2,4,5,7,9,11\}
$$

$$
a m=\{9,11,0,2,4,5,7\}
$$

As before, let's put am in numeric order and compare it to CM.

$$
\begin{aligned}
& \mathrm{CM}=\{0,2,4,5,7,9,11\} \\
& \mathrm{am}=\{0,2,4,5,7,9,11\}
\end{aligned}
$$

Yes. As we've said so many times before, a major key and its relative pure minor have exactly the same pitches. So, let's update the Venn diagrams for our two examples.

Why don't we go ahead and include the mathematical equations for the minor key intersections!?

$$
a m \cap \mathrm{em}=\{0,2,4,7,9,11\}
$$

$$
\mathrm{em} \cap \mathrm{bm}=\{2,4,6,7,9,11\}
$$

Yes. These are exactly the same as their relative major keys.
Now that we've looked at the mathematical connections, let's refocus on just the musical ones. If we stay true to our typical style, a graph will probably fit the bill.

What is it we're actually looking at in this graphic above? Your original key, seen in the middle above, is whatever key you're starting in. If it's major, it has a relative minor and vice-versa. If you subtract one accidental from the key signature you have a closely-related major key and minor key (on the left). If you add one accidental to the original key signature you have another set of closely-related keys, one major and one minor (on the right).

You're probably asking, "What does it mean to add and subtract accidentals?" Let's look at an example.

If the original key is A major (F\# minor) with 3 sharps in the key signature, adding 1 accidental to the key signature would take us to E major (C\# minor). Subtracting 1 accidental would take us to D major (B minor). So, from A major there would be a total of 5 other keys (including the relative minor) that would be closely-related. Let's see that in a graph, like the one on the previous page.

Let's consider another example.

You are probably ready to ask, "What about C major? How would that work?" Here's the answer in musical form.

I know it's been a while, but let's put these examples on the CPS to see how they look and to see if there are other relationships we can discover. The example on the left below is from the original key signature of C Major to its closely-related keys. The right-hand example includes the relative minors of each.

Table of Contents

Here's one more example with A Major being the original key.

If you carefully study these CPS graphs you'll discover something really interesting. Take A Major (above) as our starting key. The closely-related major keys are actually the keys based on the IV and \mathbf{V} chords of A Major. The relative minors of these two are keys based on the ii and iii chords of A Major, and, of course, the relative minor of our starting key is based on the vi.

Let all of that sink in for a moment. Gather up the diatonic chords connected to our closely-related keys and what you have is this... keys based on the I, ii, iii, $\overline{I V}, \mathbf{V}$ and vi chords. So, from our starting point of A Major we'd have this:

I	ii	iii	IV	V	vi
A Major	B Minor	C\# Minor	D Major	E Major	F\# Minor

As with all of our concepts of this nature, it will work in any key. Here are two more examples:

I	ii	iii	IV	V	vi
C Major	D Minor	E Minor	F Major	G Major	A Minor

$\underset{\text { Eb Major }}{\text { I }}$
ii
F Minor
iii
G Minor
$\underset{\text { Ab Major }}{\text { IV }}$
$\underset{\text { Bb Major }}{\text { V }}$
vi
C minor

Before we put this section to bed, let's consider a starting key that's minor.
If your original key is minor, all of the same relationships will be in tact, just shifted a bit. Let's take A Minor (pure form) as our example. Knowing that it is the relative minor of C Major, here's what we have:

i	III	iv	v	VI	VII	
A Minor	C Major	D Minor	E Minor	F Major	G Major	
	I	ii	iii	IV	V	vi
	C Major	D Minor	E Minor	F Major	G Major	A Minor

As you can see, all of the same keys are closely-related, but the starting point has shifted.

Before we end this we need to take note of a couple of issues. These concepts above will work until you make your way around to $\mathrm{C} \#$ major and Cb major. Those are the two keys that contain all the sharps or all the flats. What are the issues with these two keys (and their relative minors)?

In C\# major, when you try to add a sharp to the key signature, it will create keys that do not exist, G\# major and $\mathrm{E} \mathrm{\#}$ minor. So, what's the problem creating those two keys? Since $\mathrm{C} \#$ major contains a sharp for every pitch in our diatonic scale, there are no more pitches to add a sharp to. For $\mathrm{G} \#$ major and $\mathrm{E} \#$ minor you would end up with a key signature that contained seven sharps plus an additional Fx (F -double sharp). ...not a good plan.

The same thing happens when you try to add a flat to Cb major (Ab minor). You end up with Fb major and $D b$ minor. The key signature for those would have to include a $B b b$.

So, bottom line... C\# major ($A \#$ minor) and $C b$ major ($A b$ minor) will have two fewer closely-related keys than all the other keys.

That's it. That's all I have for you at this point.

Worksheets

MOD 7

Name: \qquad ID\# \qquad

Calculate the congruent number, in MOD 7, for each of the following:
$12 \equiv \ldots \quad(\bmod 7)$
$8 \equiv \ldots \quad(\bmod 7)$
$17 \equiv \ldots \quad(\bmod 7)$
$13 \equiv \ldots \quad(\bmod 7)$
$15 \equiv$ \qquad $(\bmod 7)$
$11 \equiv$ \qquad $(\bmod 7)$

9 ミ \qquad $(\bmod 7)$
$17 \equiv \ldots \quad(\bmod 7)$ $(\bmod 7)$
$16 \equiv$ \qquad $(\bmod 7)$
$19 \equiv$ \qquad $(\bmod 7)$

Complete the following equations in MOD 7.
$7+7=$ \qquad $(\bmod 7)$
$6+4=$ \qquad $(\bmod 7)$
$4+5=$ \qquad $(\bmod 7)$
$4+3=$ \qquad $(\bmod 7)$
$7+5=$ \qquad $(\bmod 7)$
$6+6=\ldots \quad(\bmod 7)$
$2+7=$ \qquad $(\bmod 7)$
$3+5=$ \qquad $(\bmod 7)$
$2+2=$ \qquad $(\bmod 7)$
$6+5=$ \qquad $(\bmod 7)$
$6+7=$ \qquad $(\bmod 7)$
$4+2=$ \qquad $(\bmod 7)$

Using our Musical Alphabet, in MOD 7, complete the following equations.
If $1=\mathrm{D}$ then $3=$ \qquad If $1=\mathrm{A}$ then $5=$ \qquad If $1=E$ then $7=$ \qquad
If $1=B$ then $2=$ \qquad If $1=F$ then $4=$ \qquad If $1=\mathrm{C}$ then $6=$ \qquad
If $1=\mathrm{G}$ then $5=$ \qquad If $3=\mathrm{D}$ then $1=$ \qquad If $5=A$ then $1=$ \qquad
If $7=\mathrm{E}$ then $1=$ \qquad If $2=B$ then $1=$ \qquad If $4=F$ then $1=$ \qquad
If $6=\mathrm{C}$ then $1=$ \qquad If $3=\mathrm{G}$ then $1=$ \qquad If $5=\mathrm{D}$ then $1=$ \qquad

MOD 12-1

Name: \qquad ID\# \qquad

Calculate the congruent number, in MOD 12, for each of the following:

Complete the following equations in MOD 12.
$2+9=$ \qquad $(\bmod 12)$
$6+7=$ \qquad $(\bmod 12) \quad 3+8=$ \qquad $(\bmod 12)$
$4+10=$ \qquad $(\bmod 12)$
$8-11=$ \qquad 2-7 = \qquad $(\bmod 12)$
$4+8=$ \qquad $(\bmod 12)$
$9+7=$ \qquad $(\bmod 12)$
$5-11=$ \qquad $(\bmod 12)$
$8+7=$ \qquad $(\bmod 12)$
$7-9=$ \qquad $(\bmod 12) \quad 8+7=$ \qquad $(\bmod 12)$

For each of the pitches given below enter the corresponding number from the CPS.
G\# = \qquad
$C=$ \qquad
$E=$ \qquad
G = \qquad
$B b=$ \qquad
$\mathrm{G} b=$ \qquad
C\# = \qquad
$E b=$ \qquad
$A b=$ \qquad
$B=$ \qquad
F\# = \qquad
D = \qquad
A\# = \qquad
D\# = \qquad
$\mathrm{D} b=$ \qquad
$\mathrm{F}=$ \qquad
$A=$ \qquad

MOD 12-2

Name \qquad ID\# \qquad
Referring to the CPS, write your phone number on the music staff below. Use the time signature and rhythm shown in the example below. (This is the Music Office number.)
example

Your phone number

Whose number is this?

Call this one for an automated response.

Diatonic Intervals - 1

Name: \qquad ID\# \qquad

Give the diatonic interval for each of the following equations. (For now, these will not have the quality designation, only the distance.)

$\{\hat{1}, \uparrow \hat{7}\}=\ldots$	$\{\hat{2}, \uparrow \hat{6}\}=\ldots \quad(\bmod 7)$	$\{\hat{3}, \uparrow \hat{5}\}=$
$\{\hat{1}, \downarrow \hat{7}\}=\ldots \quad(\bmod 7)$	$\{\hat{2}, \downarrow \hat{6}\}=\ldots \quad(\bmod 7)$	$\{\hat{3}, \downarrow \hat{5}\}=$
$\{\hat{2}, \uparrow \hat{7}\}=\ldots \quad(\bmod 7)$	$\{\hat{3}, \uparrow \hat{6}\}=\ldots \quad(\bmod 7)$	$\{\hat{4}, \uparrow \hat{5}\}=$
$\{\hat{2}, \downarrow \hat{7}\}=\ldots$	$\{\hat{3}, \downarrow \hat{6}\}=\ldots \quad(\bmod 7)$	$\{\hat{4}, \downarrow$ 今 $\}=$
$\{\hat{3}, \uparrow \hat{7}\}=\ldots$	$\{\hat{4}, \uparrow \hat{6}\}=\ldots \quad(\bmod 7)$	$\{\hat{5}, \uparrow \hat{5}\}=$
$\{\hat{3}, \downarrow \hat{7}\}=\ldots$	$\{\hat{4}, \downarrow \hat{6}\}=\ldots \quad(\bmod 7)$	$\{\hat{5}, \downarrow$ 今 $\}=$
$\{\hat{4}, \uparrow \hat{7}\}=\ldots$	$\{\hat{5}, \uparrow \hat{6}\}=\ldots \quad(\bmod 7)$	$\{\hat{6}, \uparrow \hat{5}\}=$
$\{\hat{4}, \downarrow \hat{7}\}=\ldots \quad(\bmod 7)$	$\{\hat{5}, \downarrow \hat{6}\}=\ldots \quad(\bmod 7)$	$\{\hat{6}, \downarrow \hat{5}\}=$
$\{\hat{5}, \uparrow \hat{7}\}=\ldots$	$\{\hat{6}, \uparrow \hat{6}\}=\ldots$	$\{\hat{7}, \uparrow \hat{5}\}=$
$\{\hat{5}, \downarrow \hat{7}\}=\ldots$	$\{\hat{6}, \downarrow \hat{6}\}=\ldots \quad(\bmod 7)$	$\{\hat{7}, \downarrow \hat{5}\}$
$\{\hat{6}, \uparrow \hat{7}\}=\ldots$	$\{\hat{7}, \uparrow \hat{6}\}=\ldots$	$\{\hat{1}, \uparrow \hat{5}\}=$
$\{\hat{6}, \downarrow \hat{7}\}=\ldots$	$\{\hat{7}, \downarrow \hat{6}\}=\ldots$	$\{\hat{1}, \downarrow \hat{5}\}$
$\{\hat{7}, \uparrow \hat{7}\}=\ldots$	$\{\hat{1}, \uparrow \hat{6}\}=\ldots$	$\{\hat{2}, \uparrow \hat{5}\}=$
$\{\hat{7}, \downarrow \hat{7}\}=\ldots$	$\{\hat{1}, \downarrow \hat{6}\}=\ldots \quad(\bmod 7)$	$\{\hat{2}, \downarrow \hat{5}\}=$

Diatonic Intervals - 2

Name: \qquad ID\# \qquad
example:
If $\hat{1}=D$ then $\uparrow 5$ th from $\hat{2}=$ \qquad $(\bmod 7)$; the answer is B

If $\hat{1}=F$ then \uparrow 2nd from $\hat{3}=$ \qquad $(\bmod 7)$ If $\hat{1}=F$ then $\downarrow 2$ nd from $\hat{3}=$ \qquad $(\bmod 7)$

If $\hat{1}=F$ then $\uparrow 3$ rd from $\hat{4}=\ldots \quad(\bmod 7) \quad$ If $\hat{1}=F$ then $\downarrow 3$ rd from $\hat{4}=$ \qquad $(\bmod 7)$

If $\hat{1}=B$ then $\uparrow 4$ th from $\hat{5}=$ \qquad $(\bmod 7)$

If $\hat{1}=B$ then $\downarrow 4$ th from $\hat{5}=$ \qquad $(\bmod 7)$

If $\hat{1}=B$ then $\uparrow 5$ th from $\hat{6}=$ \qquad $(\bmod 7) \quad$ If $\hat{1}=B$ then $\downarrow 5$ th from $\hat{6}=$ \qquad $(\bmod 7)$

If $\hat{1}=E$ then \uparrow th from $\hat{7}=\ldots \quad(\bmod 7) \quad$ If $\hat{1}=E$ then $\downarrow 6$ th from $\hat{7}=$ \qquad $(\bmod 7)$

If $\hat{1}=E$ then $\uparrow 7$ th from $\hat{1}=\ldots(\bmod 7) \quad$ If $\hat{1}=E$ then $\downarrow 7$ th from $\hat{1}=$ \qquad $(\bmod 7)$

If $\hat{1}=A$ then $\uparrow 2$ nd from $\hat{2}=$ \qquad $(\bmod 7)$ If $\hat{1}=A$ then $\downarrow 2 n d$ from $\hat{2}=$ \qquad $(\bmod 7)$

If $\hat{1}=A$ then $\uparrow 3$ rd from $\hat{3}=$ \qquad $(\bmod 7)$ If $\hat{1}=A$ then \downarrow rd from $\hat{3}=$ \qquad $(\bmod 7)$

If $\hat{1}=D$ then $\uparrow 4$ th from $\hat{4}=$ \qquad $(\bmod 7)$ If $\hat{1}=D$ then \downarrow th from $\hat{4}=$ \qquad $(\bmod 7)$

If $\hat{1}=D$ then $\uparrow 5$ th from $\hat{5}=$ \qquad $(\bmod 7)$ If $\hat{1}=D$ then $\downarrow 5$ th from $\hat{5}=$ \qquad $(\bmod 7)$

If $\hat{1}=\mathrm{G}$ then \uparrow 6th from $\hat{6}=$ \qquad $(\bmod 7) \quad$ If $\hat{1}=G$ then $\downarrow 6$ th from $\hat{6}=$ \qquad $(\bmod 7)$

If $\hat{1}=\mathrm{G}$ then $\uparrow 7$ th from $\hat{7}=\ldots \quad(\bmod 7) \quad$ If $\hat{1}=G$ then $\downarrow 7$ th from $\hat{7}=$ \qquad $(\bmod 7)$

If $\hat{1}=C$ then \uparrow 2nd from $\hat{1}=$ \qquad $(\bmod 7)$ If $\hat{1}=C$ then $\downarrow 2$ nd from $\hat{1}=$ \qquad $(\bmod 7)$

If $\hat{1}=C$ then \uparrow 3rd from $\hat{2}=$ \qquad $(\bmod 7)$ If $\hat{1}=C$ then \downarrow rd from $\hat{2}=$ \qquad $(\bmod 7)$

Ascending Intervals - 1

Name: \qquad
\qquad

What are the labels for each of the following interval types?
Augmented \qquad Perfect \qquad Diminished \qquad
Major \qquad Minor \qquad

How many half-steps are each of the following intervals?
\qquad
\qquad M3 \qquad m7 \qquad
M6 \qquad
P5 \qquad
M7 \qquad m2 \qquad A4 \qquad P4 \qquad
P8 \qquad d5 \qquad m3 \qquad M2 \qquad

Identify and label each of the following intervals on the keyboard.

\qquad interval

\qquad interval

\qquad interval

\qquad interval

Ascending Intervals - 2

\qquad interval

\qquad interval

\qquad interval

Identify and label each of the following intervals on the staff.

\qquad interval \qquad interval

\qquad interval

\qquad interval

\qquad interval

Ascending Intervals - 3

Name: \qquad ID\# \qquad
Using the chart on page 17 of the text, as well as the CPS, please complete each of the equations below.

Example: P4 up from D

$$
P 4=\{2,(2+5)\} \rightarrow P 4=\{2,7\} \rightarrow P 4=\{D, G\}
$$

M3 up from Db

$$
\mathrm{M} 3=\left\{\ldots,\left(\ldots_{+}^{+}\right)\right\} \rightarrow \mathrm{M} 3=\{\ldots, \ldots\} \rightarrow \mathrm{M} 3=\{\ldots, \ldots\}
$$

m6 up from E

$$
m 6=\left\{\ldots,\left(\ldots^{+} \ldots\right)\right\} \rightarrow m 6=\{\ldots, \ldots\} \rightarrow m 6=\{\ldots, \ldots\}
$$

M2 up from F\#

$$
\mathrm{M} 2=\left\{\ldots,\left(\ldots_{+}^{+}\right)\right\} \rightarrow \mathrm{M} 2=\{\ldots, \ldots\} \rightarrow \mathrm{M} 2=\{\ldots, \ldots\}
$$

m7 up from G

$$
\mathrm{m} 7=\left\{\ldots,\left(\ldots^{+} \ldots\right)\right\} \rightarrow \mathrm{m} 7=\{\ldots, \ldots\} \rightarrow \mathrm{m} 7=\{\ldots, \ldots\}
$$

P4 up from $A b$

$$
P 4=\left\{\ldots,\left(\ldots^{+} \ldots\right)\right\} \rightarrow P 4=\{\ldots, \ldots\} \rightarrow P 4=\{\ldots, \ldots\}
$$

P5 up from B

$$
P 5=\{\ldots,(\ldots+\ldots)\} \rightarrow P 5=\{\ldots, \ldots\} \rightarrow P 5=\{\ldots, \ldots\}
$$

A4 up from C

$$
\mathrm{A} 4=\left\{\ldots,\left(\ldots_{+}^{+}\right)\right\} \rightarrow \mathrm{A} 4=\{\ldots, \ldots\} \rightarrow \mathrm{A} 4=\{\ldots, \ldots\}
$$

d5 up from D

$$
\mathrm{d} 5=\left\{\ldots,\left(\ldots{ }^{+}\right)\right\} \rightarrow \mathrm{d} 5=\{\ldots, \ldots\} \rightarrow \mathrm{d} 5=\{\ldots, \ldots\}
$$

Descending Intervals - 1

Name: \qquad ID\# \qquad
Using the chart on page 21, as well as the keyboard and CPS graphs on page 112 , complete the following equations. Give the CPS numbers as well as the letter names.

If $p=5$ then P4 $\downarrow=\{$ \qquad
\qquad $\}(\bmod 12)$ answer \qquad
\qquad ; \qquad ,

If $p=4$ then $P 5 \downarrow=\{$ \qquad , \qquad $\}(\bmod 12)$

If $p=3$ then $m 6 \downarrow=\{$ \qquad , \qquad $\}(\bmod 12)$ answer \qquad , \qquad ; \qquad , answer \qquad ; —, \qquad
If $p=2$ then M6 $\downarrow=\{$ \qquad , \qquad $\}(\bmod 12)$ answer \qquad
\qquad ; \qquad ,

If $p=1$ then $m 7 \downarrow=\{$ \qquad , \qquad $\}(\bmod 12)$ answer \qquad , \qquad ; \qquad ,

If $p=0$ then M7 $\downarrow=\{$ \qquad , \qquad $\}(\bmod 12)$ answer \qquad ; \qquad ,

If $p=11$ then $m 2 \downarrow=\{$, \qquad $\}(\bmod 12)$ answer \qquad , \qquad ; \qquad ,

If $p=10$ then M2 $\downarrow=\{$ \qquad , $\}(\bmod 12)$

If $p=9$ then $m 3 \downarrow=\{$ \qquad , \qquad answer \qquad , \qquad ; \qquad ,

If $p=8$ then M3 $\downarrow=\{$ \qquad , $\}(\bmod 12)$

If $p=7$ then $A 4 \downarrow=\{$ \qquad $, \ldots\}(\bmod 12)$

If $p=6$ then $d 5 \downarrow=\{$ \qquad , \qquad $\}(\bmod 12)$ answer \qquad , \qquad ; \qquad , answer \qquad ; \qquad answer \qquad , \qquad ; \qquad ,

Descending Intervals - 2

From the pitch given on the staff, indicate the letter names of the given interval.

P4 $\downarrow=$ \qquad ,

PS $\downarrow=$ \qquad -

$\mathrm{m} 6 \downarrow=\ldots$, \qquad

MW $\downarrow=$ \qquad
\qquad

$\mathrm{m} 7 \downarrow=$ \qquad
\qquad

MT $\downarrow=$ \qquad , \qquad
7):b0
$\mathrm{m} 2 \downarrow=$ \qquad ,

\qquad

$\mathrm{A} 4 \downarrow=$ \qquad

$\mathrm{d} 5 \downarrow=$ \qquad
\qquad

Descending Intervals - 3

Name: \qquad
Identify and label each of the intervals on the keyboards below.

\qquad interval

\qquad interval

\qquad interval

\qquad interval

\qquad interval

\qquad interval

\qquad interval

interval

Interval Inversions - 1

Name: \qquad ID\# \qquad

Give the complimentary interval (inversion) for each of the following intervals. The original interval will be designated as O and the inversion as I.
example: equation $\mathrm{O}=5 \rightarrow \mathrm{I}=$ \qquad (mod 12) answer $\quad \mathrm{I}=7$
$\mathrm{O}=11 \rightarrow \mathrm{I}=$ \qquad $(\bmod 12)$
$\mathrm{O}=9 \rightarrow \mathrm{I}=$ \qquad $(\bmod 12)$
$\mathrm{O}=6 \rightarrow \mathrm{I}=$ \qquad $(\bmod 12)$
$\mathrm{O}=3 \rightarrow \mathrm{I}=$ \qquad $(\bmod 12)$
$\mathrm{O}=1 \rightarrow \mathrm{I}=$ \qquad $(\bmod 12)$
$\mathrm{O}=2 \rightarrow \mathrm{I}=$ \qquad $(\bmod 12)$
$\mathrm{O}=4 \rightarrow \mathrm{I}=$ \qquad $(\bmod 12)$
$\mathrm{O}=5 \rightarrow \mathrm{I}=$ \qquad $(\bmod 12)$
$\mathrm{O}=7 \rightarrow \mathrm{I}=$ \qquad $(\bmod 12)$
$\mathrm{O}=8 \rightarrow \mathrm{I}=$ \qquad $(\bmod 12)$
$\mathrm{O}=10 \rightarrow \mathrm{I}=$ \qquad $(\bmod 12)$
$\mathrm{O}=0 \rightarrow \mathrm{I}=$ \qquad $(\bmod 12)$

Give the inversions for the following intervals.
example: equation $\mathrm{P} 4 \uparrow \rightarrow \overline{ }$
answer $\quad \mathrm{P} 4 \uparrow \rightarrow \mathrm{P} 5 \downarrow$

M7 $\uparrow \rightarrow$
$\mathrm{m} 3 \uparrow \rightarrow$
M2 $\downarrow \rightarrow$

$$
\mathrm{m} 7 \uparrow \rightarrow
$$

M6 $\downarrow \rightarrow$
$\mathrm{d} 5 \uparrow \rightarrow$

$$
\text { M3 } \downarrow \rightarrow
$$

$\mathrm{m} 2 \uparrow \rightarrow$ \qquad $\mathrm{P} 4 \downarrow \rightarrow$

Interval Inversions - 2

Name: \qquad ID\#

For each of the following, identify the given interval, then give its inversion.

interval \qquad interval \qquad
interval \qquad inversion \qquad
inversion \qquad
 interval \qquad interval \qquad inversion \qquad

interval \qquad inversion \qquad

interval \qquad inversion \qquad

Interval Inversions - 3

For each of the following, identify the given interval, then give its inversion.

interval \qquad inversion \qquad

interval \qquad inversion \qquad
interval \qquad inversion \qquad

interval \qquad inversion \qquad

Augmented and Diminished Intervals - 1

Name: \qquad ID\# \qquad
For each of the given note sets, identify the original interval, then add an accidental to one of the pitches to create the intended intervals. Give the letter names.

example:

original interval $=$
original interval $=\mathrm{P} 4$
original interval $=$ \qquad M6 = \qquad , \qquad or \qquad , \qquad
A4 = \qquad , \qquad or \qquad , \qquad $\mathrm{A} 4=\mathrm{D}, \mathrm{G} \#$ or $\mathrm{D} b, \mathrm{G}$

original interval $=$ \qquad m3 = \qquad , \qquad or \qquad
\qquad

original interval $=$ \qquad d5 = \qquad , \qquad or \qquad ,

original interval $=$ \qquad
\qquad , \qquad or \qquad , \qquad

original interval $=$ \qquad A6 = \qquad , \qquad
\qquad ,

Augmented and Diminished Intervals - 2

Name: \qquad ID\# \qquad

original interval $=$ \qquad M3 = \qquad , \qquad or \qquad ,

original interval $=$ \qquad d7 = \qquad , \qquad or \qquad , \qquad

original interval $=$ \qquad
\qquad
\qquad or \qquad ,

original interval $=$ \qquad d6 = \qquad , \qquad or \qquad , \qquad

original interval $=$ \qquad A5 $=$ \qquad , \qquad or \qquad ,

original interval $=$ \qquad

$$
\mathrm{m} 6=
$$, \qquad ,

original interval $=$ \qquad M7 = \qquad , \qquad or \qquad ,

For each of the given note sets below, identify the interval, give the inversion, and give the enharmonic equivalent.
example:

original interval $=A 2$ inversion $=d 7 \quad$ enharmonic $=m 3$

Augmented and Diminished Intervals - 3

original $=$ \qquad inversion $=$ enharmonic $=$

original $=$ \qquad inversion $=$ \qquad enharmonic $=$

original $=$ \qquad inversion $=$
enharmonic $=$ \qquad

original $=$ \qquad inversion = \qquad
enharmonic $=$ \qquad

original $=$ \qquad
inversion = \qquad
enharmonic = \qquad

original $=$ \qquad
inversion =
enharmonic $=$ \qquad

original $=$ \qquad inversion = \qquad enharmonic $=$ \qquad

original $=$ \qquad inversion $=$ \qquad

Diatonic Major Scales - 1

Name: \qquad ID\# \qquad
Using the equation immediately below (from p. 40 of the text), \ldots
$M=\{p,(p+2),(p+4),(p+5),(p+7),(p+9),(p+11)\}(\bmod 12)$
...and the given CPS number (p) representing the tonic pitch, give the numbers (from the CPS) for each pitch of the scale as well as the corresponding letter names.
example:
if $p=2$ then $M=\{$ \qquad , \qquad , \qquad , \qquad , \qquad , \qquad , \qquad $\}(\bmod 12)$
$M=\{2,4,6,7,9,11,1\}(\bmod 12)$ $M=\{D, E, F \#, G, A, B, C \#\}$

$$
p=6 \rightarrow
$$

\qquad
\qquad
\qquad
\qquad , _ , \qquad
\qquad $\}(\bmod 12)$ $M=\{$ _ , \qquad
\qquad
\qquad
\qquad , \qquad

$$
p=4 \rightarrow \quad M=\{\ldots,
$$

\qquad
\qquad , \qquad
\qquad
\qquad

$$
\}(\bmod 12)
$$

$$
M=\{\ldots,
$$

\qquad
\qquad , _ , \qquad
\qquad , \qquad \}

$$
p=8 \rightarrow \quad M=\{\longrightarrow,
$$

\qquad
\qquad , —_, \qquad
\qquad $, \quad\} \quad\}(\bmod 12)$ $M=\{$ \qquad , \qquad , _ , \qquad
\qquad , __ \}
$p=10 \rightarrow M=\{\longrightarrow$, \qquad
\qquad
\qquad
\qquad , , ___ $\}(\bmod 12)$ $M=\{\ldots$, \qquad
\qquad , _ , \qquad
\qquad , __ \}

Diatonic Major Scales - 2

$p=5 \rightarrow$
$M=\{\ldots$,
, ___ $\}(\bmod 12)$
$M=\{\quad$, ,
, __,
, __ \}
$p=3 \rightarrow M=\{$
, ___ $\}(\bmod 12)$
$M=\{\ldots$,
,
,
,
_ $\}$
$p=7 \rightarrow \quad M=\{\longrightarrow$, \qquad
\qquad , \qquad
\qquad
\qquad $\}(\bmod 12)$ $M=\{\ldots$, \qquad , _ , , _ , , _ , \qquad , __ \}
$p=9 \rightarrow \quad M=\{\ldots$, \qquad
\qquad , _ , \qquad
\qquad $, \ldots\}(\bmod 12)$ $M=\{\quad$, \qquad
\qquad , \qquad
\qquad ,__\}

$$
p=11 \rightarrow M=\{.
$$

\qquad
\qquad
\qquad , \qquad
\qquad $, \quad\} \quad 3(\bmod 12)$
$M=\{\ldots$, \qquad , \qquad , ——, , \quad, \quad _ $\}$
$p=1 \rightarrow$ \qquad
\qquad
\qquad , _ , \qquad
\qquad $, \quad\} \quad\}(\bmod 12)$ $M=\{\ldots$, \qquad , \qquad , \qquad
\qquad , __ \}

Diatonic Major Scales - 3

Name: \qquad ID\# \qquad
Referring to the whole-step/half-step pattern for major scales, identify which pitch in each of the following scales is incorrect and enter the correct pitch in the blank.
2\%-60
0

-
be
corrected pitch \qquad

corrected pitch \qquad

0
\#O
\#o
$\# \otimes$
-
corrected pitch \qquad

Diatonic Minor Scales-1

Name: \qquad ID\# \qquad
Using the equation immediately below (from p. 46 of the text), \ldots
$m=\{p,(p+2),(p+3),(p+5),(p+7),(p+8),(p+10)\}(\bmod 12)$
...and the given CPS number (p) representing the tonic pitch, give the numbers (from the CPS) for each pitch of the scale as well as the corresponding letter names.
example:

$$
\text { if } p=2 \text { then } m=\{.
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad \} (mod 12)

$$
m=\{2,4,5,7,9,10,0\}(\bmod 12)
$$

$$
m=\{D, E, F, G, A, B b, C\}
$$

$p=6 \rightarrow \quad m=\{\longrightarrow$, \qquad , \qquad
\qquad $, \ldots\}(\bmod 12)$ $m=\{$ \qquad
\qquad , , \qquad ,___\}

$$
p=4 \rightarrow \quad m=\{\ldots,
$$

\qquad
\qquad , \qquad
\qquad $, \quad\} \quad\}(\bmod 12)$ $m=\{$ \qquad , \qquad , \qquad , \qquad , ___ \}

$$
p=8 \rightarrow \quad m=\{\ldots,
$$

\qquad
\qquad , \qquad
\qquad , ___ $\}(\bmod 12)$ $m=\{\ldots$, \qquad
\qquad , \qquad
\qquad
, \qquad
$p=10 \rightarrow m=\{\longrightarrow$, \qquad
\qquad , \qquad
\qquad
$\ldots\}(\bmod 12)$ $m=\{\quad$ _ , \qquad , ——, , \qquad
\qquad
\qquad
$p=5 \rightarrow \quad m=\{\longrightarrow$, \qquad
\qquad
\qquad , _ , \qquad , ___ \} (mod 12$)$ $m=\{$ \qquad , \qquad , , \qquad ,___\}

Diatonic Minor Scales-2

$\mathrm{p}=3 \rightarrow$
$\mathrm{~m}=$ \{
, __,
, ___ $\}(\bmod 12)$
$m=\{\ldots$,
,
, _ ,
, __ \}
$p=7 \rightarrow \quad m=\{\ldots$,
,$\quad[\quad\}(\bmod 12)$
$m=\{\ldots$,
,
,
,
,
_ $\}$
$p=9 \rightarrow \quad m=\{\ldots$, \qquad
\qquad , \qquad
\qquad $\ldots \quad\}(\bmod 12)$ $m=\{\ldots$, \qquad , _ , \qquad , _ , \qquad , __ \}
$p=11 \rightarrow \quad m=\{\ldots$, \qquad
\qquad
\qquad , _ , \qquad ,$\ldots(\bmod 12)$ $m=\{\underline{Z}$, \qquad , _ , , \qquad
\qquad , __ \}
$p=1 \rightarrow$
$m=\{$ \qquad , \qquad
\qquad , \qquad , $\quad\}(\bmod 12)$ $\left.m=\{\ldots, \quad, \quad, \quad, \quad, \quad, \quad, \quad]_{<}\right\}$

Diatonic Minor Scales - 3

Name: \qquad ID\# \qquad
Using the scales noted above, identify and give the altered pitches that will be needed to create the harmonic minor and melodic minor versions.
example:
$p=2 \quad$ pitch change for harmonic $=C \#$
pitch changes for ascending melodic $=\mathrm{B} \sharp, \mathrm{C} \#$
$p=4$ pitch change for harmonic $=$ \qquad pitch changes for ascending melodic $=$ \qquad , \qquad
$p=5 \quad$ pitch change for harmonic $=$ \qquad pitch changes for ascending melodic $=$ \qquad , \qquad
$p=7$ pitch change for harmonic = \qquad pitch changes for ascending $\overline{\text { melodic }}=$ \qquad , \qquad
$p=9 \quad$ pitch change for harmonic $=$ \qquad pitch changes for ascending melodic $=$ \qquad , \qquad
$p=10$ pitch change for harmonic $=$ \qquad pitch changes for ascending $\overline{\text { melodic }}=$ \qquad
\qquad
$p=11$ pitch change for harmonic $=$ \qquad pitch changes for ascending melodic $=$ \qquad
\qquad
$p=8 \quad$ pitch change for harmonic $=$ pitch changes for ascending melodic $=$ \qquad , \qquad
$p=1 \quad$ pitch change for harmonic $=$ \qquad pitch changes for ascending melodic $=$ \qquad , \qquad

Diatonic Minor Scales - 4

Name: \qquad ID\# \qquad
Complete each of the following tables, constructing the minor scales indicated by \mathbf{p} as the tonic.

In the top row, give the CPS numbers for the PURE minor scale using this equation:

$$
\{p,(p+2),(p+3),(p+5),(p+7),(p+8),(p+10)\}(M O D 12)
$$

- In the second row, give the letter names (and accidentals) for the PURE minor scale.
- In the third row, give the letter names (and accidentals) for the HARMONIC version of the scale.
- In the fourth row, give the letter names (and accidentals) for the *ascending MELODIC version.

$\mathrm{p}=9 \rightarrow \mathrm{~m}=$									(MOD 12)
Pure									
Harmonic									
Melodic *									
	$\hat{1}$	$\hat{2}$	$\widehat{3}$	4	今	6	$\hat{7}$	$\hat{1}$	

$\mathrm{p}=2 \rightarrow$	$\mathrm{m}=$									(MOD 12)
Pure										
Harmonic										
Melodic *										
		$\hat{1}$	$\hat{2}$	$\hat{3}$	$\hat{4}$	S	6	7	$\hat{1}$	

$\mathrm{p}=7 \rightarrow \mathrm{~m}=$									(MOD 12)
Pure									
Harmonic									
Melodic *									
	$\hat{1}$	$\hat{2}$	$\widehat{3}$	$\hat{4}$	5	6	$\hat{7}$	$\hat{1}$	

Diatonic Minor Scales-5

$\mathbf{p = 0 \rightarrow} \mathbf{m}=$									(MOD 12)
Pure									
Harmonic									
Melodic *									

$\mathbf{p = 5 \rightarrow} \mathbf{m}=$									(MOD 12)
Pure									
Harmonic									
Melodic *									

$p=10 \rightarrow$	$m=$								
(MOD 12)									
Pure									
Harmonic									
Melodic *									

$\mathbf{p = 3 \rightarrow}$	$\mathrm{m}=$								
(MOD 12)									
Pure									
Harmonic									
Melodic *									

Diatonic Minor Scales - 6

$\mathrm{p}=8 \rightarrow$	$\mathrm{m}=$									(MOD 12)
Pure										
Harmonic										
Melodic*										
		$\hat{1}$	$\hat{2}$	$\widehat{3}$	$\hat{4}$	今	6	$\hat{7}$	$\hat{1}$	

$\mathrm{p}=1 \rightarrow \mathrm{~m}=$									(MOD 12)
Pure									
Harmonic									
Melodic*									
	$\hat{1}$	$\hat{2}$	$\widehat{3}$	$\hat{4}$	5	6	$\hat{7}$	$\hat{1}$	

$p=6 \rightarrow$	$\mathrm{m}=$									(MOD 12)
Pure										
Harmonic										
Melodic *										
		$\hat{1}$	2	$\widehat{3}$	$\hat{4}$	5	6	$\hat{7}$	$\hat{1}$	

$\mathrm{p}=11 \rightarrow \mathrm{~m}=$									(MOD 12)
Pure									
Harmonic									
Melodic *									
	$\hat{1}$	$\hat{2}$	$\hat{3}$	$\hat{4}$	5	6	$\hat{7}$	$\hat{1}$	

Diatonic Minor Scales - 7

$\mathrm{p}=4 \rightarrow \mathrm{~m}=$									(MOD 12)
Pure									
Harmonic									
	Melodic *								

Major and Minor Keys - 1

Name: ID\#

Referring to the charts on page 48 of the text, give the scale degree name for each of the following.
example:
If $F=\hat{1}$ then $C=$ \qquad answer: Dominant

If $G=\hat{1}$ then $B=$ \qquad If $B b=\hat{2}$ then $D b=$ \qquad

If $D=\hat{3}$ then $G=$ \qquad If $F=\hat{4}$ then $C=$ \qquad

If $\mathrm{A} b=\hat{5}$ then $\mathrm{E} b=$ \qquad If $C=\hat{6}$ then $D=$ \qquad

If $\mathrm{E}=\hat{7}$ then $\mathrm{B} b=$ \qquad If $G \#=\hat{3}$ then $C \#=$ \qquad

If $B=\hat{4}$ then $F \#=$ \qquad If $D b=\hat{5}$ then $F=$ \qquad

If $F \#=\hat{3}$ then $E=$ \qquad If $A=\hat{4}$ then $D \#=$ \qquad

If $C \#=\hat{2}$ then $G \#=$ \qquad If $E b=\hat{5}$ then $A b=$ \qquad

If $\mathrm{G} b=\hat{4}$ then $\mathrm{E} b=$ \qquad If $\mathrm{D} b=\hat{2}$ then $\mathrm{Fb}=$ \qquad

Major and Minor Keys - 2

Arrange the keys in order by taking the numbers from the list of keys on the left and putting them in the correct order (top to bottom) in the blanks on the right.

1 Bb major
2 C major
3 Ab major
4 Cb major
5 Eb major
6 Gb major
7 F major
8 Db major

Arrange the keys in order by taking the numbers from the list of keys on the left and putting them in the correct order (top to bottom) in the blanks on the right.

1 G major
2 C major
3 A major
4 C\# major
5 E major
6 B major
7 F\# major
8 D major

Major and Minor Keys-3

Name: \qquad ID\# \qquad
Identify each of the following key signatures and give its relative minor key.

Major key \qquad Relative minor key \qquad

Major key \qquad Relative minor key \qquad

$\frac{9: b^{b}}{\square}$
Major key \qquad Relative minor key \qquad

Major key \qquad Relative minor key \qquad

Major and Minor Keys - 4

Major key \qquad Relative minor key \qquad

Major key \qquad Relative minor key \qquad

Major key \qquad Relative minor key \qquad

Major key \qquad Relative minor key \qquad

Major key \qquad Relative minor key \qquad

Major and Minor Keys - 5

Major key \qquad Relative minor key \qquad

Major key \qquad Relative minor key \qquad

Major key \qquad Relative minor key \qquad

Major key \qquad Relative minor key \qquad 6): $\frac{b^{2}, b-b^{b}}{b}$

Major key \qquad Relative minor key \qquad

Note Values and Meter - 1

Name: \qquad ID\# \qquad
Add the note values on the left together then choose the correct equivalent value on the right. (Circle the correct answer.)
example:
o) $0=$
A. 0 .

C. \quad.
A.A.
A. δ
B.
C.
d d d. $\rho=$
A. 0 .
B. δ
C.
d. d $\rho=$
A. 0. B. .
C. \mathbf{o}
d. d d d $=$
A. \mathbf{o}
B. .
C. 0 .

- d d d d $=$
A. 0
B. . .
C. 0 .

○. $\bullet \bullet \bullet \bullet \bullet=$
A. 0 .
B. \mathbf{o}.
C. \mathbf{o}

Note Values and Meter - 2

For each of the following note groupings, based on note values and beamed groups, give the best possible meter. (Designate the meter like this: $3 / 4,4 / 2$, etc.)
example: $\bullet \bullet$ answer: $4 / 4$

$$
d \cdot d=
$$

$$
d 000 \cdot=
$$

d. d $0 \cdot 0=$ \qquad

$$
\begin{aligned}
& \text { d. . d. d }=\text { A. } \delta \quad \text { B. d d d C.d. d d }
\end{aligned}
$$

Note Values and Meter - 3

$$
\begin{aligned}
& 0 \cdot \rho \cdot d \rho= \\
& \text { - d d = } \\
& \text {-. } . d= \\
& \bullet \bullet \bullet \bullet \bullet \bullet . \quad= \\
& \theta d d d \theta d d d= \\
& \text { d d d d d }=
\end{aligned}
$$

Compound and Asymmetrical Meter - 1
Name: \qquad ID\# \qquad
For each of the compound meters given:

- identify and circle the note value that gets one beat
- give the mathematical designation for that note value
- give the number of beats in one measure
example:

6	$A d$	Bo. $c d$.	$3 / 8$	2

8	Ad Bd. Cd.	
6	Ad. Bd Cd.	
12	Ad. Bd. Cd	
9 4	A - Bd. Co.	
2	Ad Bd Co.	
${ }^{6} 6$	A d. B © Co.	
12	Ad. Bd. Cd	
9 16	Ad. Bd Co.	
12	A. Bo. Co.	
9	Ad. Bd Co.	

Compound and Asymmetrical Meter-2

For each of the musical excerpts below, identify the compound meter.
example:

Table of Contents

Compound and Asymmetrical Meter - 3

\qquad

For each of the musical excerpts given:

- identify and give the asymmetrical meter
- give the mathematical equation for the subdivisions of the beats
- give the number of beats in one measure
example:

Compound and Asymmetrical Meter - 4

Triads - 1

Name: \qquad ID\# \qquad
For each of the keys noted below, write the triads on the staff for each of the Roman numerals given.
example:

Triads - 2

F\# major

iv

Triads - 3

Name: \qquad ID\# \qquad
For the next exercise, use these Roman numerals for major and minor keys.
Major: I ii iii IV \mathbb{V} vi viio Minor: i ii ${ }^{\circ}$ III iv v VI VII
For each of the chords given in open voicing, write the triad in root position in closed voicing and give the Roman numeral.

$A b$ major

G major

F major

Gb major

F minor

E minor

D minor

Eb minor

Triads - 4

B major

Chord Quality - 1

Name: \qquad ID\# \qquad
For each of the following triads, identify the quality. Write the appropriate label under each chord. (Each triad is independent, not based on a specific key.)

Identify the key of each selection below based on the accidentals. An upper case letter will signify a major key and lower case will be minor.

Label each of the triads with the appropriate Roman numeral. (Hint: The root of the first and last chord of each selection will be the tonic pitch of the key.) (Another hint: not every triad will be in root or closed position.) (Last hint: Watch for $\overline{\mathrm{V}}$ in minor keys.)

Key \qquad

Chord Quality - 2

Key \qquad

Key

Key

Key

Chord Quality - 3

Name: \qquad ID\# \qquad
For each of the following selections, identify the key and the triads. Label the triads with the appropriate Roman numeral. (Note: some selections have the key signature and some do not. If there is not a key signature, you must identify the key by the music itself.)

Chord Quality - 4

Table of Contents

Chord Quality - 5

Table of Contents

7th Chords - 1

Name: \qquad ID\# \qquad

Complete this table with the appropriate interval qualities.

Quality of the 7th chord	Distance from R up to 3rd	Distance from 3rd up to 5th	Distance from 5th up 7th	Distance from 7th up to R
MM				
dm				
dd				
AM				

Identify the quality and label each of the following 7th chords.
These are the labels you should use: $\quad \mathrm{MM} \quad \mathrm{Mm} \quad \mathrm{mm} \quad \mathrm{mM} \quad \mathrm{dm}$ dd $\begin{array}{lllll} & \mathrm{AM}\end{array}$

7th Chords - 2

Identify each of the following diatonic 7th chords. In the blank above the chord write the quality. In the blanks below, give the key then write the appropriate Roman numerals.

Key \qquad

7th Chords - 3

Name: \qquad ID\# \qquad
For the 7th chords given below, indicate how they would appear on the keyboard. Put the chord in root position and place an X in the box of each key/pitch of the chord. The chords are indicated with the letter name of the root, then the quality of the 7th chord. The first one is completed as an example.

Eb - mm

C\#-dd

F\#-mm

Db - Mm

7th Chords - 4

$B b-d m$

G\#-dd

Inversions and Figures Bass - 1

Name: \qquad ID\# \qquad
Complete the following table

Chord member in the bass	\mathbf{R} (triad)	3rd (triad)	5th (triad)	\mathbf{R} (7th chord)	3rd (7th chord)	5th (7th (hord)	7th (7th chord)
Figured bass typically used							

How do you find the root of a triad if:

- the 3rd is in the bass \qquad
- the 5th is in the bass \qquad

How do you find the root of a 7th chord if:

- the 3 rd is in the bass \qquad
- the 5th is in the bass \qquad
- the 7th is in the bass \qquad

For each of the following bass lines with figured bass, notate the chord (in closed voicing) above the given bass note and give the appropriate Roman numeral for the chord.

Eb:
${ }_{4}^{6}$
6

Inversions and Figures Bass - 2

D:
6
6
6
4
7

$f:$
6
5
6
6
4
7

Give a complete harmonic analysis of the following selections. Include the key, Roman numerals, and figured bass.

Table of Contents

Inversions and Figures Bass - 3

Table of Contents

7th Chords, Inversions, and Figures Bass - 1

Name: \qquad ID\# \qquad
Complete this table with the appropriate interval qualities.

Quality of the 7th chord	Distance from R up to 3rd	Distance from 3rd up to 5th	Distance from 5th up 7th	Distance from 7th up to R
MM				
dm				
dd				
AM				

In the tables below, put the appropriate quality of the 7th chords in the blank boxes above the Roman numerals.

Major

Quality of the 7th chord							
Roman numeral	I^{7}	ii^{7}	iii^{7}	IV^{7}	$\mathrm{~V}^{7}$	vi^{7}	$\mathrm{vii}^{{ }^{7} 7}$

Pure Minor

Quality of the 7th chord							
Roman numeral	i^{7}	$\mathrm{ii}{ }^{\boldsymbol{7}}$	III 7	iv^{7}	v^{7}	VI 7	VII 7

Harmonic Minor

Quality of the 7th chord							
Roman numeral	i^{7}	$\mathrm{ii}{ }^{\circ}{ }^{7}$	III 7	iv 7	V 7	VII 7	vii $^{\circ}$

Ascending Melodic Minor

Quality of the 7th chord							
Roman numeral	i^{7}	ii ${ }^{\circ 7}$	III 7	iv 7	V 7	vi^{07}	vii $^{\circ 7}$

7th Chords, Inversions, and Figures Bass - 2

Give a complete harmonic analysis of the following selections. Include the key, Roman numerals, and figured bass. In the blanks above the chords write the chord quality. If it has no 7th, you will only need to put a one-letter label for the triad. If it has a 7th, it will need two letters to identify it. (See the example immediately below)

7th Chords, Inversions, and Figures Bass - 3

Strong Root Movement -1

Name: \qquad ID\# \qquad
Identify the root movements between each of the chords in the following progressions. Use the following abbreviations: D5 = down a 5th; D3 = down a 3rd; U2 = up a 2nd If the root movement is one of the exceptions put \mathbf{E}. If it's a weak movement put \mathbf{W}.

Strong Root Movement - 2

For each of the following progressions, put the root movements in the blanks above the staff.

Underneath the staff put the key, then put the scale degree that is the root of each chord. Remember: Scale degrees have the circumflex above.

KEY
\qquad

Table of Contents

Strong Root Movement - 3

For each of the following tables, create a chord progression using ONLY strong root movements (including the Exceptions). In the blocks, put the scale degree of the chord's root. In the blanks above put the type of movement it is (D5, D3, U2, E). Note: They begin and end on $\hat{1}$.

Cadences - 1

Name: \qquad ID\# \qquad
What are the names of the two phrases that comprise a full musical period (in order)?

What cadence is typically found at the end of the first phrase? \qquad
What cadence is typically found at the end of the second phrase? \qquad

For the following musical excerpts:

- give the Roman numerals and figured bass for each chord (below the staff) - give the root movements in the blanks above the staff (D5, D3, U2, E, W) - identify and label each cadence (with the abbreviations - PAC, IAC, HC, PC, DC)

Bb:

Eb:

Cadences - 2

E:

c\#:

Table of Contents

Voice-Leading - 1

Name: \qquad ID\# \qquad
Let's take our Voice-Leading guidelines, break them down, give them abbreviated labels, and use them in this worksheet. (Please review the list in the book on page 102.)

These new labels are just for this worksheet. You do not need to memorize them (just the concepts behind them).

1. Step-wise movement $=\quad \mathrm{SW}$ Outlining Harmony $=\quad \mathrm{OH}$
2. Leap $/$ Step $=$ LS
3. Diminished Intervals $=\mathrm{DI}$
4. Active Tones

Leading Tone $=\quad$ LT
7th of Chords $=\quad$ SC
Accidentals $=\quad$ AC

For the following musical excerpts, place the label (from the list above), that best fits the voice-leading in the boxed sections, in the box with the music. (See the examples) If a note has an X covering it, just consider it a non-harmonic tone and ignore it (for now).

Table of Contents

Voice-Leading - 2

What is the key for the previous selection? \qquad
In the previous selection, what is the cadence in measure 4 ? \qquad
In the previous selection, what is the harmony (Roman numeral) in measures 4 and $6 ?$ \qquad

Voice-Leading - 3

(For the previous selection)
What key does this piece begin in? \qquad
What is the chord (Roman numeral; no inversion) for measure 1? \qquad
(see the measure numbers at the beginning of each system)
What is the chord (Roman numeral; no inversion) for measure $6 ?$ \qquad
Starting in measure 10 there are no more Bb s.
What key is the music in at measure 12? \qquad
Analyze the last beat of measure 11 then measure 12. What cadence is that? \qquad

Canonic Conundrum

An Etude for Soprano and Tenor

Lon W. Chaffin

Table of Contents

Voice-Leading - 4

Within the parameters noted below, construct melodies following the guidelines provided on page 102 of the text.

- Use only quarter notes
- Make sure your melody fits within the meter and harmony provided
- Step-wise passing notes are acceptable between harmonic changes

(note the clef and the meter)

Note: The harmony in this last selection changes every two beats.

Part-Writing - 1

Name: \qquad ID\# \qquad
For the following hymn-tune (Darwall's 148th) we will be analyzing the part-writing. The following music is the tune with all four parts included, but we will be analyzing only two voices at a time.

We will break them down in this order: $\mathrm{SA}, \mathrm{ST}, \mathrm{SB}, \mathrm{AT}, \mathrm{AB}, \mathrm{TB}$
For the part-writing analysis, use the following designations:
$\mathrm{S}=$ similar motion
$\mathrm{O}=$ oblique motion
$\mathrm{C}=$ contrary motion
PII5 = parallel 5ths
Pll8 = parallel 8ves
D5 = direct 5ths
D8 = direct 8ves
From one set of vertical notes to the next, determine the type of movement. Put these designations (above) between the sets (see the examples below).

Part-Writing - 2

Soprano / Alto

Table of Contents

Part-Writing - 3

Soprano / Bass

Table of Contents

Part-Writing - 4

Alto / Bass

Tenor / Bass

Table of Contents

Part-Writing - 5

Name: \qquad ID\# \qquad
For the following hymn-tune give a full harmonic analysis with Roman numerals and figured bass. Note the key changes in measures 5 and 8, and the advanced analysis in measure 12. For the key changes, simply analyze the music in the key indicated. For the symbols in measure 12, just give the appropriate analysis before and after them.

Part-Writing - 6

For each chord in this hymn-tune, indicate which, if any, chord members are doubled/ tripled or omitted. Use these labels:
-3 (3rd omitted)
-5 (5th omitted)
+R (root doubled or tripled)
+3 (3rd doubled)
+5 (5th doubled)
+7 (7th doubled)
Put the label for the omitted notes above the staff and the label for the doubled notes below the staff (see examples below).

If a chord has nothing doubled/tripled or omitted simply put nothing.

On the next page, using the labels from our previous worksheet, label each passage enclosed in a rectangle. (See examples)

Step-wise movement = SW
Outlining Harmony $=\mathrm{OH}$
Leap $/$ Step $=\quad$ LS
Diminished Intervals = DI

Active Tones
Leading Tone = LT
7th of Chords = SC
Accidentals $=\quad \mathrm{AC}$

Part-Writing-7

Also, circle any voice-leading movement that does not fall into our specific categories or is considered something to avoid.

For example:
A leap not resolved appropriately
An augmented interval
An active tone not resolved appropriately

FI.

Table of Contents

Melodic Construction

Name: \qquad ID\# \qquad
For the following harmonic progression, construct 3 different effective melodies, following our voice-leading guidelines.

Note: The harmony changes every two beats, on the 1st and 3rd beats of each measure.

You may use quarter notes and eighth notes as your rhythmic material.

Closely-related Keys - 1

Name: \qquad ID\# \qquad
List every key that is closely-related to the keys given below. Use a single uppercase letter for major keys and a single lowercase letter for minor keys.

1. G Major
2. C Major \qquad
\qquad
\qquad
\qquad
3. F Major \qquad
\qquad
\qquad
\qquad
\qquad
4. Bb Major \qquad
5. Eb Major \qquad

6. Ab Major \qquad

7. Db Major
8. Gb Major
9. Cb Major \qquad
10. D Major \qquad
\qquad
\qquad
\qquad
11. A Major
12. E Major \qquad
13. B Major \qquad
14. F\# Major \qquad
15. C\# Major \qquad
16. E Minor \qquad

Closely-related Keys - 2

Endnotes

1. Helmholtz, Vorträgeund Reden, 82
2. Hutchinson, "Celebrating," 6
3. Pink, Whole New Mind, 139

Bibliography

Assayag, Gerard., Feichtinger, Hans., and Rodrigues, Jose Francisco. Mathematics and Music. Berlin: Springer, 2002

Cooper, Grosvenor., and Meyer, Leonard B. The Rhythmic Structure of Music. Chicago: The University of Chicago Press, 1960.

Fauvel, John., Flood, Raymond., and Wilson, Robin. Music and Mathematics: From Pythagoras to Fractals. Oxford: Oxford University Press, 2003.

Harkleroad, Leon. The Math Behind the Music. Cambridge: Cambridge University Press, 2006.
Helmholtz, Hermann von. Vorträgeund Reden, Bd. 1. Braunschweig, 1884
Hutchinson, Lydia. "Celebrating Another Day: James Taylor." Performing Songwriter (Nashville) May, 2002

Johnson, Timothy A. Foundations of Diatonic Theory: A Mathematically Based Approach to Music Fundamentals. Emeryville: Key College Publishing, 2003.

Lerdahl, Fred. Tonal Pitch Space. Oxford: Oxford University Press, 2004.
Loy, Gareth. Musimathics, Volume 1: The Mathematical Foundations of Music. Cambridge: The MIT Press, 2007.

Loy, Gareth. Musimathics, Volume 2: The Mathematical Foundations of Music. Cambridge: The MIT Press, 2007.

Madden, Charles. Fractals in Music: Introductory Mathematics for Musical Analysis. Salt Lake City: High Art Press, 1999.

Pierce, Rod. "Math is Fun" Math Is Fun. Ed. Rod Pierce. 6 Mar 2020. 12 Mar 2020
http://www.mathsisfun.com/
Pink, Daniel. A Whole New Mind: Why Right-Brainers Will Rule the Future. New York: Riverhead Books, 2006

Rothstein, Edward. Emblems of Mind: The Inner Life of Music and Mathematics. Chicago: The University of Chicago Press, 1995.

Todd, Deborah. The Facts On File Algebra Handbook. New York: Facts on File, 2003.

Graphics for Reference

Circle of Fifths (these videos are only available in the ebook version)

Ascending

Circle of
5ths
on the
CPS

Descending

Circle of
5ths
on the
CPS

Strong Root Movements

STRONG ROOT MOVEMENT CALCULATOR

(only available in the ebook version)

Math Equations and Charts

(only available in the PDF and ebook versions)
Click on the links below to take you to the noted information
Interval Equation Chart
Basic Intervals and Inversions
Diatonic Interval Equations
Half-step Interval Alterations
Interval Chart with Enharmonic Variables
Charts for Interval Quality and Distance Inversions
Equation for a Major Scale
Equation for a Minor Scale
Inversions and Figured Bass Chart
Strong Root Movement Chart

Additional Math Connections

Mathematical Angles of Intervals and Inversions

The Geometry of Intervals

(only available in the ebook version)

Interval / Inversion Equations Chart

$p=$ any pitch from the Chromatic Pitch Set
The chart can be read from left to right or from right to left
The number of half-steps in the inverted interval equations is found by subtracting the number of half-steps in the original equation from 12 (the inversion is the remainder of the octave)

Interval (Ascending)	Inverted Interval (Descending)
$m 2 \uparrow=\{p,(p+1)\}(\bmod 12)$	$M 7 \downarrow=\{p,(p-11)\}(\bmod 12)$
$\mathrm{M} 2 \uparrow=\{\mathrm{p},(\mathrm{p}+2)\}(\bmod 12)$	$\mathrm{m} 7 \downarrow=\{\mathrm{p},(\mathrm{p}-10)\}(\bmod 12)$
$m 3 \uparrow=\{p,(p+3)\}(\bmod 12)$	$M 6 \downarrow=\{p,(p-9)\}(\bmod 12)$
$\mathrm{M} 3 \uparrow=\{\mathrm{p},(\mathrm{p}+4)\}(\bmod 12)$	$m 6 \downarrow=\{p,(p-8)\}(\bmod 12)$
$P 4 \uparrow=\{p,(p+5)\}(\bmod 12)$	$P 5 \downarrow=\{p,(p-7)\}(\bmod 12)$
$A 4 \uparrow=\{p,(p+6)\}(\bmod 12)$	$\mathrm{d} 5 \downarrow=\{\mathrm{p},(\mathrm{p}-6)\}(\bmod 12)$
$d 5 \uparrow=\{p,(p+6)\}(\bmod 12)$	$A 4 \downarrow=\{p,(p-6)\}(\bmod 12)$
$P 5 \uparrow=\{p,(p+7)\}(\bmod 12)$	$P 4 \downarrow=\{p,(p-5)\}(\bmod 12)$
$m 6 \uparrow=\{p,(p+8)\}(\bmod 12)$	$M 3 \downarrow=\{p,(p-4)\}(\bmod 12)$
$M 6 \uparrow=\{p,(p+9)\}(\bmod 12)$	$m 3 \downarrow=\{p,(p-3)\}(\bmod 12)$
$m 7 \uparrow=\{p,(p+10)\}(\bmod 12)$	$M 2 \downarrow=\{p,(p-2)\}(\bmod 12)$
M7 $\uparrow=\{p,(p+11)\}(\bmod 12)$	$m 2 \downarrow=\{p,(p-1)\}(\bmod 12)$

The Geometry of Triads and Seventh Chords

Examples of Complementary (Mirrored) Triads and Seventh Chords

The purpose of including these graphs is not to just provide colorful geometric designs, but to demonstrate the connections between seemingly unrelated triads and seventh chords. Until we arrive at the study of set theory in our journey, let's just make note that the chords represented in each graph have the same combination of intervals. Those intervals may not be in the same sequence within the chord or start from the same root, but exist within both chords. In our graphs, for example:
F minor contains (m3, M3, P4) C major contains (M3, m3, P4)

They have the same group of intervals, even though they have different roots and a different sequence for the intervals.

* With enharmonic respellings, there are 12 different dd7 chords in this graph

[^0]: * The augmented 4th (A4) and diminished 5th (d5) will be discussed in Section 7.

